Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:49:09.774Z Has data issue: false hasContentIssue false

Critical Laser Fluence Observed in (111) Texture, Grain Size and Mobility of Laser Crystallized Amorphous Silicon

Published online by Cambridge University Press:  01 January 1993

R.I. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
G.B. Anderson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
J.B. Boyce
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
D.K. Fork
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
P. Mei
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
S.E. Ready
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
S. Chen
Affiliation:
XMR Corporation, 5403 Betsy Ross Drive, Santa Clara CA 94304
Get access

Abstract

This paper describes new results on the relationship between the grain size, mobility, and Si (111) x-ray peak intensity of laser crystallized amorphous silicon as a function of the laser fluence, shot density, substrate temperature, and film thickness. These observations include an unexpected narrow peak found in the silicon (111) x- ray peak intensity, which occurs at a specific laser fluence for a given film thickness and substrate temperature. Amorphous silicon materials processed at laser energy densities defined by this peak exhibit exceptionally large grain sizes and electron mobilities that cannot be obtained at any other energy and shot density combination above or below the energy at which the Si (111) x-ray peak intensity maximum occurs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Samashima, T. and Usui, S., Mat. Res. Soc. Symp. Proc. 71, 435 (1986).Google Scholar
2. Ready, S. E., Boyce, J. B., Bachrach, R. Z., Johnson, R. I., Winer, K., Anderson, G. B., and Tsai, C. C., Mat. Res. Soc. Proc. 149, 345 (1989)Google Scholar
3. Winer, K., Bachrach, R. Z., Johnson, R. I., Ready, S. E., Anderson, G. B., and Boyce, J. B., Mat. Res. Soc. Proc. 164, 183 (1990).Google Scholar
4. Winer, K., Anderson, G. B., Ready, S. E., Bachrach, R. Z., Johnson, R. I., Ponce, F.A., and Boyce, J. B., Appl. Phys. Lett. 57, 2222 (1990).Google Scholar
5. Bachrach, R. Z., Winer, K., Boyce, J. B., Ready, S. E., Johnson, R. I., and Anderson, G. B., J. Electron. Mat. 19, 241 (1990)Google Scholar
6. Johnson, R. I., Anderson, G. B., Ready, S. E., Boyce, J. B., Mat. Res. Soc. Proc. 219, 407 (1991)Google Scholar
7. Kuriyama, H., et al. , IEEE International Electron Meeting, Wash. D.C. (1991)Google Scholar
8. Johnson, R. I., Anderson, G. B., Ready, S. E., Fork, D. K., and Boyce, J. B., Mat.Res. Soc. Proc. 258, 123 (1992)Google Scholar
9. Asai, I., Kato, N., Fuse, M. and Hamano, T., to be published.Google Scholar
10. Samashima, T., to be published in Mat. Res. Soc. Proc, Fall (1992).Google Scholar
11. Iwata, H., to be published in Mat. Res. Soc. Proc. Fall (1992).Google Scholar
12. Kim, H. J., Im, J. S., and Thompson, M. O., to be published in Mat. Res. Soc. Proc. Spring (1993).Google Scholar