Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:38:04.883Z Has data issue: false hasContentIssue false

Corrosion of Steel Drums Containing Cemented Ion-Exchange Resins as Intermediate Level Nuclear Waste

Published online by Cambridge University Press:  28 March 2012

Gustavo S. Duffó
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. Universidad Nacional de San Martín, Argentina. Comisión Nacional de Energía Atómica, Depto. Materiales, Av Gral Paz 1499, (1650) San Martín, Buenos Aires, Argentina.
Silvia B. Farina
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. Universidad Nacional de San Martín, Argentina.
Fátima M. Schulz
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
Get access

Abstract

Ion-exchange resins are used for purification of radioactive liquid waste from nuclear reactors. After exhaustion, resins become intermediate level radioactive waste to be managed. They have to be immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability for safety requirements. The immobilized resins are thus contained in steel drums that can undergo internal corrosion depending on the presence of certain contaminants. This work shows an study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different types and contents of aggressive species. Results show that the corrosion depth of the steel drums after a period of 300 years (foreseen life-span of the radioactive waste disposal facility), in the most unfavorable case (high chloride contamination), will be considerably lower than the thickness of the wall of the drums.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Duffó, G.S., Farina, S.B., Schulz, F.M. and Marotta, F., J. Nucl. Mater. 405, 274 (2010).10.1016/j.jnucmat.2010.08.016Google Scholar
2. Frizon, F. and Cau-dit-Caumes, C., J. Nucl. Mater. 359, 162 (2006).10.1016/j.jnucmat.2006.08.024Google Scholar
3. Duffó, G.S., Farina, S.B. and Giordano, C.M., Electrochim. Acta 54, 1010 (2009).10.1016/j.electacta.2008.08.025Google Scholar
4. Duffó, G.S., Farina, S.B. and Giordano, C.M., Mater. Corros. 61, 480 (2010).10.1002/maco.200905346Google Scholar
5. Andrade, C. and González, J.A., Werkst. Korros. 29, 515 (1978).10.1002/maco.19780290804Google Scholar
6. Brandt, R.A., Normos program , Julich, Germany: Forschungszentrum Julich GmbH (KFA), 1989.Google Scholar
7. Andrade, C. and Alonso, M.C., Constr. Build. Mater. 15, 141 (2001).10.1016/S0950-0618(00)00063-5Google Scholar
8. ASTM C 876, Standard test method for half-cell potential for uncoated reinforcing steel in concrete , American Society of Testing and Materials, Philadelphia, 1987.Google Scholar
9. Andrade, C., Alonso, M.C., Gonzalez, J.S., An initial effort to use the corrosion rate measurements for estimating rebar durability, in: Berke, N. S., Chaker, V., Whiting, W. D. (Eds.), Corrosion Rates of Steel in Concrete , ASTM STP 1065, ASTM International, Philadelphia, 1990, pp. 2937.10.1520/STP25013SGoogle Scholar
10. Andrade, C. and Alonso, C., Constr. Build. Mater. 15, 315 (1996).10.1016/0950-0618(95)00044-5Google Scholar
11. Razvan, A. and Raman, A., Pract. Metallogr. 23, 223 (1986).Google Scholar
12. Raman, A., Nasrazadani, S. and Sharma, L., Metallogr. 22, 79 (1989).10.1016/0026-0800(89)90024-4Google Scholar
13. de la Fuente, D., Díaz, I., Simancas, J., Chico, B. and Morcillo, M., Corros. Sci. 53, 604 (2011).10.1016/j.corsci.2010.10.007Google Scholar