Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T09:01:06.006Z Has data issue: false hasContentIssue false

Contactless Electroreflectance Study of InxGa1-xAs/InP Multiple Quantum Well Structures Including the Observation of Surface/Interface Electric Fields

Published online by Cambridge University Press:  03 September 2012

L.V. Malikova
Affiliation:
Physics Department and New York State Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA.
J.Z. Wan
Affiliation:
Physics Department and New York State Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA.
Fred H. Pollak
Affiliation:
Physics Department and New York State Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA.
J.G. Simmons
Affiliation:
Center for Electrophotonic Materials and Devices (CEMD), McMaster University, Hamilton, Ontario, L8S 4L7, Canada.
D.A. Thompson
Affiliation:
Center for Electrophotonic Materials and Devices (CEMD), McMaster University, Hamilton, Ontario, L8S 4L7, Canada.
Get access

Abstract

Contactless electroreflectance measurements at 300 K were performed on two InxGal-xAs/InP ]x = 0.53 (lattice-matched) and 0.75] samples containing three quantum wells (QWs) grown by gas-source molecular beam epitaxy. The spectra consisted of two excitonic transitions (le-l hh and le-l lh), corresponding to the fundamental conduction to heavy (h)- and light(l)- hole transitions, respectively, in the QW portion and a complicated Franz-Keldysh oscillation (FKO) pattern originating in the InP regions. Comparison between the experimental energies of le-l hh/le-llh and a theoretical envelope function calculation (including the effect of strain) made it possible to evaluate the conduction band offset parameters Qc =0.34+0.03 and 0.57+0.03 for x = 0.53 and 0.75, respectively. The InP related FKO beat patterns were analyzed by a Fourier transform method. It was found that the FKO spectra were due to the simultaneous contribution of at least three different fields (106 kV/cm, 36 kV/cm, and 23 kV/cm), which originate in the various interfaces, i.e., substrate/buffer, cap layer/surface, and buffer/QW structure. Identification of the different fields has been accomplished by comparison of the Fourier-transformed spectra before and after sulfur passivation of the structure surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Elenkrig, B. B., Thompson, D. A., Simmons, J. G., Bruce, D.M., Si, Y., Zhao, J., Evans, J.D., and Templeton, I.M., Appl. Phys. Lett. 65,1239 (1994).Google Scholar
2 Temkin, H., Gershoni, D., and Panish, M. B., in Semiconductors and Semimetals, 40, ed. Gossard, A.C. (Academic Press, New York, 1994) p.337.Google Scholar
3 Wan, J. Z., Thompson, D. A., and Simmons, J. G., Nucl. Inst. & Methods in Phys. Res. B 106, 461 (1995).Google Scholar
4 Gershoni, D., Temkin, H., Vandenberg, J. M., S. N. G. Chu,Hamm, R. A., and Panish, M. B., Phys. Rev. Lett. 60, 448 (1988).Google Scholar
5 See, for example, Missous, M., in Properties of Aluminum Gallium Arsenide, ed. by Adachi, S., (INSPEC, London, 1993) p. 73.Google Scholar
6 Pollak, F. H., and Shen, H., Mater. Sci. Eng. R10, 275 (1993) and reference therein.Google Scholar
7 Pollak, F. H., in Handbook on Semiconductors Vol. 2, Optical Properties of Semiconductors, ed. Balkanski, M. (North Holland, Amsterdam, 1994) p.527.Google Scholar
8 Glembocki, O.J., and Shanabrook, B.V., in Semiconductors and Semimetals, ed. Seiler, D.G., and Littler, C.L., (Academic, New York, 1992) p. 221 36 and references therein.Google Scholar
9 Shen, H., and Dutta, M., J. Appl. Phys. 78, 2151 (1995).Google Scholar
10 Bastard, G., and Brum, J. A., IEEE J. Quantum Electron., QE–22, 1625 (1986).Google Scholar
11 Pan, S. H., Shen, H., Hang, Z., Pollak, F. H., Zhuang, W., Xu, Q., Roth, A. P., Masut, R., LeCelle, C., and Morris, D., Phys. Rev., B 38, 3375 (1988).Google Scholar
12 Alperovich, V., Jaroshevich, A., Scheibler, H., and Terekhov, A., Solid State Electron., 37, 657 (1994).Google Scholar
13 Holm, R., Glembocki, O., and Tuchman, J., Mater. Res. Soc. Symp. Proc., 406, 247 (1996).Google Scholar
14 Iyer, R., Chang, R.R., Dubey, A., and Lile, D.L., J. Vac. Sci. Technol. B6,1174 (1988).Google Scholar
15 Wang, D., and Chen, C., Appl. Phys. Lett., 67 (14), 2069 (1995).Google Scholar
16 Aspnes, D., and Studna, A., Phys. Rev. B, 7,4605 (1973).Google Scholar
17 Numerical Data and Functional Relationships in Science and Technology, ed. by Madelung, O., Schulz, M., and Weiss, H., Landolt-Bornstein, New Series, Group III, Vol.17 (Springer, New York, 1982).Google Scholar
18 Hybertsen, M.S., Appl. Phys. Lett., 58,1759 (1991).Google Scholar
19 Orme, C., Johnson, M. D., Sudijono, J. L., Leung, K. T., and Orr, B. G., Appl. Phys. Lett., 64, 860 (1994).Google Scholar
20 Gray, M.L., and Pollak, F.H., J. Appl. Phys., 74, 3426(1993).Google Scholar
21 Ismail, A., Ben Brahim, A., Lassabatere, L., and Lindau, I., J. Appl. Phys., 59,485 (1986).Google Scholar
22 Zhou, W., Dutta, M., Shen, H., and Pamulapati, J., J. Appl. Phys., 73,1266 (1993).Google Scholar