Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T11:38:08.880Z Has data issue: false hasContentIssue false

Acoustic Emission Monitoring of Nanoindentation-Induced Slip and Twinning in Sapphire

Published online by Cambridge University Press:  11 February 2011

Natalia I. Tymiak
Affiliation:
Hysitron, Inc., Minneapolis, MN 55439
Antanas Daugela
Affiliation:
Hysitron, Inc., Minneapolis, MN 55439
Thomas J. Wyrobek
Affiliation:
Hysitron, Inc., Minneapolis, MN 55439
Oden L. Warren
Affiliation:
Hysitron, Inc., Minneapolis, MN 55439
Get access

Abstract

Monitoring with an Acoustic Emission (AE) sensor integrated into an indenter tip was utilized for the evaluation of the earliest stages of indentation-induced plasticity in sapphire single crystal. The evaluated surfaces included basal (C), rhombohedral (R) and two different prismatic orientations (A and M). The differences between the mechanisms of the initial stages of plasticity for the various crystallographic orientations were reflected in the following aspects of AE activity: detection of a specific type of AE waveform that correlated to the presence of linear surface features near the indentation impressions; AE signal associated with the yield point, consisting either of one or two distinct waveforms; and presence or absence of AE signals after the yield point. Moreover, analysis of AE activity revealed loading rate effects on the yield point mechanism for the M plane. The possibility of plasticity onset mechanisms involving both slip and twinning is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lagerlof, K.P.D., Proceedings of SPIE, 3060, 270 (1997).Google Scholar
2. Hockey, B.J., J. Am. Ceram. Soc., 54, 223 (1971).Google Scholar
3. Nowak, R., Sakai, M., Acta Met., 42, 2879 (1994).Google Scholar
4. Nowak, R., Sekino, T., Ninahara, K., Phil. Mag. A, 74, 171 (1996).Google Scholar
5. Nowak, R., Sekino, T., Ninahara, K., Acta Mater., 47, 4329 (1999).Google Scholar
6. Kollenberg, W., J. Mater. Sci., 23, 3321(1988).Google Scholar
7. Mollis, S.E., Clarke, D.R., J. Am. Ceram. Soc., 73, 3189 (1990).Google Scholar
8. Chan, H.M., Lawn, B.R., J. Am. Ceram. Soc., 71, 29 (1988).Google Scholar
9. Page, T.F., Oliver, W.C., McHargue, C.J., J. Mater. Res., 7, 450 (1992).Google Scholar
10. Daugela, A., Kutomi, H., Wyrobek, T.J., Zeitschrift fur Metall., 92, 1052 (2001).Google Scholar
11. Tymiak, N.I., Daugela, A., Wyrobek, T. J., Warren, O.L., J. Mater. Res., 18 (2003).Google Scholar
12. Laughner, J.W., Cline, T.W., Newnham, R.E., Cross, L.E., Phys. Chem. Minerals., 4, 129 (1979).Google Scholar
13. Van Doren, S.L., Pond, R.B. Sr, Green, R.E., J. Appl. Phys., 47, 4343 (1976).Google Scholar
14. Bovenko, V.N., Polynin, V.I., Soldatchenkova, L.S., Materials Science, 14, 54 (1978).Google Scholar
15. Crepin, J., Bretheau, T., Calldemaison, D., Ferrer, F., Acta Mater., 48, 505 (2000).Google Scholar
16. Harding, D.S., Oliver, W.C., Pharr, G.M., Mater. Res. Soc. Symp. Proc., 356, 663 (1995).Google Scholar