Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T10:47:21.419Z Has data issue: false hasContentIssue false

Role of nanoparticle interaction in magnetic heating

Published online by Cambridge University Press:  21 June 2019

Ramanujam Lenin
Affiliation:
Institute of Nano Science and Technology, Habitat Center, Phase-X, Mohali, Punjab 160062, India
Ajit Singh
Affiliation:
Institute of Nano Science and Technology, Habitat Center, Phase-X, Mohali, Punjab 160062, India
Chandan Bera*
Affiliation:
Institute of Nano Science and Technology, Habitat Center, Phase-X, Mohali, Punjab 160062, India
*
Address all correspondence to Chandan Bera at [email protected]
Get access

Abstract

Magnetic nanoparticles have many potential applications in therapeutics and drug delivery. Heating by magnetic nanoparticles for hyperthermia application has gained tremendous popularity as a non-invasive treatment for tumor ablation. The heating effect of magnetic nanoparticles at different concentrations (1–10 wt%) in the fluid is investigated by varying the alternating magnetic field (60–260 Oe). The observed temperature rise (ΔT) shows an unusual increase with applied field in a higher nanoparticle concentration. In contrast to the previous model, the present study shows that temperature rise is more rapid in the higher particle concentration (~10 wt%) and low applied field (<125 Oe), and ΔT varies as H3/2 instead of H2.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Li, Q., Xuan, Y., and Wang, J.: Measurement of the viscosity of dilute magnetic fluids. Int. J. Thermophys. 27, 103113 (2006).Google Scholar
2.Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., and Muller, R.N.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 20642110 (2008).Google Scholar
3.Pankhurst, Q.A., Connolly, J., Jones, S.K., and Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, R167R181 (2003).Google Scholar
4.Latorre, M. and Rinaldi, C.: Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. Puerto Rico Health Sci. J. 28, 227238 (2009).Google Scholar
5.Lu, A.-H., Salabas, E.L., and Schuth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 46, 12221244 (2007).Google Scholar
6.Zverev, V., Pyatakov, A., Shtil, A., and Tishin, A.: Novel applications of magnetic materials and technologies for medicine. J. Magn. Magn. Mater. 459, 182186 (2018). The selected papers of Seventh Moscow International Symposium on Magnetism (MISM-2017).Google Scholar
7.Saniei, N.: Hyperthermia and cancer treatment. Heat Transf. Eng. 30, 915917 (2009).Google Scholar
8.Perigo, E.A., Hemery, G., Sandre, O., Ortega, D., Garaio, E., Plazaola, F., and Teran, F.J.: Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2, 041302 (2015).Google Scholar
9.Bera, C., Devarakonda, S.B., Kumar, V., Ganguli, A.K., and Banerjee, R.K.: The mechanism of nanoparticle-mediated enhanced energy transfer during high-intensity focused ultrasound sonication. Phys. Chem. Chem. Phys. 19, 1907519082 (2017).Google Scholar
10.Tishin, A.M., Shtil, A.A., Pyatakov, A.P., and Zverev, V.I.: Developing antitumor magnetic hyperthermia: principles, materials and devices. Recent Pat. Anticancer Drug Discov. 11, 360375 (2016).Google Scholar
11.Thiesen, B. and Jordan, A.: Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia 24, 467474 (2008).Google Scholar
12.Deatsch, A.E. and Evans, B.A.: Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354, 163172 (2014).Google Scholar
13.Shull, R., McMichael, R., Swartzendruber, L., and Bennett, L., Magnetocaloric effect in fine magnetic particle systems, in Magnetic Properties of Fine Particles, North-Holland Delta Series, edited by Dormann, J. and Fiorani, D. (Elsevier, Amsterdam, 1992) pp. 161169.Google Scholar
14.Rosensweig, R.E.: Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370374 (2002).Google Scholar
15.Mamiya, H. and Jeyadevan, B.: Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields. Sci. Rep. 1, 157 (2011).Google Scholar
16.Landi, G.T.: Role of dipolar interaction in magnetic hyperthermia. Phys. Rev. B 89 (2014). doi:10.1103/PhysRevB.89.014403Google Scholar
17.Klik, I., McHugh, J., Chantrell, R.W., and Chang, C.-R.: Debye formulas for a relaxing system with memory. Sci. Rep. 8 (2018). doi:10.1038/s41598-018-21028-2Google Scholar
18.Suriyanto, , Ng, E.Y.K., and Kumar, S.: Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Neelian and Brownian relaxation: a review. Biomed. Eng. Online 16, 36 (2017).Google Scholar
19.Chalopin, Y., Bacri, J.-C., Gazeau, F., and Devaud, M.: Nanoscale Brownian heating by interacting magnetic dipolar particles. Sci. Rep. 7 (2017). doi:10.1038/s41598-017-01760-xGoogle Scholar
20.Goodarzi, A., Sahoo, Y., Swihart, M.T., and Prasad, P.N.: Aqueous ferrofluid of citric acid coated magnetite particles. MRS Proc. 789, N6.6 (2003).Google Scholar
21.Monshi, A., Foroughi, M.R., and Monshi, M.R.: Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 02(03), 7 (2012).Google Scholar
22.Racuciu, M., Creanga, D.E., and Airinei, A.: Citric-acid-coated magnetite nanoparticles for biological applications. Eur. Phys. J. E 21, 117121 (2006).Google Scholar
23.Waldron, R.D.: Infrared spectra of ferrites. Phys. Rev. 99, 17271735 (1955).Google Scholar
24.Vargas, J., Nunes, W., Socolovsky, L., Knobel, M., and Zanchet, D.: Effect of dipolar interaction observed in iron-based nanoparticles. Phys. Rev. B 72, 184428 (2005).Google Scholar
25.Kotitz, R., Fannin, P.C., and Trahms, L.: Time domain study of Brownian and Neel relaxation in ferrofluids. J. Magn. Magn. Mater. 149, 4246 (1995).Google Scholar
26.Armijo, L.M., Brandt, Y.I., Mathew, D., Yadav, S., Maestas, S., Rivera, A.C., Cook, N.C., Withers, N.J., Smolyakov, G.A., Adolphi, N.L., Monson, T.C., Huber, D.L., Smyth, H.D.C., and Osinski, M.: Iron oxide nanocrystals for magnetic hyperthermia applications. Nanomaterials 2, 134146 (2012).Google Scholar
27.Van Vleck, J.H.: The influence of dipole-dipole coupling on the specific heat and susceptibility of a paramagnetic salt. J. Chem. Phys. 5, 320337 (1937).Google Scholar
28.Wadehra, N., Gupta, R., Prakash, B., Sharma, D., and Chakraverty, S.: Biocompatible ferrite nanoparticles for hyperthermia: effect of polydispersity, anisotropy energy and inter-particle interaction. Mater. Res. Express 4, 025037 (2017).Google Scholar
29.Mørup, S., Hansen, M.F., and Frandsen, C.: Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 1, 182190 (2010).Google Scholar
30.Atkinson, W. J., Brezovich, I. A., and Chakraborty, D. P., Usable frequencies in hyperthermia with thermal seeds, IEEE Trans. Biomed. Eng. 31, 7075 (1984).Google Scholar
Supplementary material: File

Lenin et al. supplementary material

Lenin et al. supplementary material 1

Download Lenin et al. supplementary material(File)
File 5.2 MB