Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T10:54:08.206Z Has data issue: false hasContentIssue false

Enhanced lithium-ion transport in organosilyl electrolytes for lithium-ion battery applications

Published online by Cambridge University Press:  30 September 2019

Leslie J. Lyons*
Affiliation:
Department of Chemistry, Grinnell College, Grinnell, IA 50112, USA
Scott Beecher
Affiliation:
1252 University of Oregon, Eugene, OR 97403-1252, USA
Evan Cunningham
Affiliation:
Department of Chemistry, Grinnell College, Grinnell, IA 50112, USA
Tom Derrah
Affiliation:
Department of Chemistry, Grinnell College, Grinnell, IA 50112, USA
Shengyi Su
Affiliation:
Department of Chemistry, Grinnell College, Grinnell, IA 50112, USA
Junmian Zhu
Affiliation:
Department of Chemistry, Grinnell College, Grinnell, IA 50112, USA
Monica Usrey
Affiliation:
Silatronix Inc., 3587 Anderson Street, Suite 108, Madison, WI 53706, USA
Adrián Peña-Hueso
Affiliation:
Silatronix Inc., 3587 Anderson Street, Suite 108, Madison, WI 53706, USA
Tobias Johnson
Affiliation:
Silatronix Inc., 3587 Anderson Street, Suite 108, Madison, WI 53706, USA
Robert West
Affiliation:
Silatronix Inc., 3587 Anderson Street, Suite 108, Madison, WI 53706, USA
*
Address all correspondence to Leslie J. Lyons at [email protected]
Get access

Abstract

The authors report on 7Li, 19F, and 1H pulsed field gradient NMR measurements of 26 organosilyl nitrile solvent-based electrolytes of either lithium bis(trifluorosulfonyl)imide (LiTFSI) or lithium hexafluorophosphate. Lithium transport numbers (as high as 0.50) were measured and are highest in the LiTFSI electrolytes. The authors also report on solvent blend electrolytes of fluoroorganosilyl (FOS) nitrile solvent mixed with ethylene carbonate (EC) and diethyl carbonate. Solvent diffusion measurements on an electrolyte with 6% FOS suggest both the FOS and EC solvate the lithium cation. By comparing lithium transport and transference numbers, the authors find less ion pairing in FOS nitrile carbonate blend electrolytes and difluoroorganosilyl nitrile electrolytes.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scrosati, B., Lithium batteries: from early stages to the future. In Lithium Batteries: Advanced Technologies and Applications, edited by Abraham, K. M., van Schalkwijk, W., and Hassoun, J. (Wiley, New Jersey, 2013) Chapter 2, pp. 2138.10.1002/9781118615515.ch2Google Scholar
2.Aurbach, D. and Schecter, A., Advanced liquid electrolytes. In Lithium Batteries: Science and Technology, edited by Nazri, G. A., and Pistoia, G. (Springer, New York, 2003) Chapter 18, pp. 530573.Google Scholar
3.Rossi, N.A.A. and West, R.: Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym. Int. 58, 267272 (2009).Google Scholar
4.Flashpoint of diethyl carbonate is tabulated in https://www.sigmaaldrich.com/catalog/product/aldrich/d91551?lang=en&region=US (accessed May 6, 2019).Google Scholar
5.Peña Hueso, J.A., Osmalov, D., Dong, J., Usrey, M., Pollina, M., and West, R.C.: Nitrile-substituted silanes and electrolyte compositions and electrochemical devices containing them. US Patent 0356735A1 (2014).Google Scholar
6.Guillot, S.L., Peña Hueso, A., Usrey, M.L., and Hamers, R.J.: Thermal and hydrolytic decomposition mechanisms of organosilicon electrolytes with enhanced thermal stability for lithium-ion batteries. J. Electrochem. Soc. 164, A1907A1917 (2017).Google Scholar
7.Chen, X., Usrey, M., Peña Hueso, A., West, R., and Hamers, R.J.: Thermal and electrochemical stability of organosililcon electrolytes for lithium-ion batteries. J. Power Sources 241, 311319 (2013).Google Scholar
8.Ma, Q., and Mandal, B.K.: Highly conductive electrolytes derived from nitrile solvents. J. Electrochem. Soc. 162, A1276A1281 (2015).Google Scholar
9.Xie, B., Mai, Y., Wang, J., Luo, H., Yan, X., and Zhang, L.: Dinitrile compound containing ethylene oxide moiety with enhanced solubility of lithium salts as electrolyte solvent for high-voltage lithium-ion batteries. Ionics 21, 909915 (2015).Google Scholar
10.Farhat, D., Ghamouss, F., Maiback, J., Edstrom, K., and Lemordant, D.: Adiponitrile-lithium bis(trimethylsulfonyl)imide solutions as alkyl carbonate-free electrolytes for Li4Ti5O12 (LTO)/LiNi1/3Co1/3Mn1/3O2 (NMC) Li-ion batteries. ChemPhysChem 18, 113 (2017).Google Scholar
11.Rohan, R., Kuo, T.-C., Lin, J.-H., Hsu, Y.-C., Li, C.-C., and Lee, J.-T.: Dinitrile-mononitrile-based electrolyte system for lithium-ion battery application with the mechanism of reductive decomposition of mononitriles. J. Phys. Chem. C 120, 64506458 (2016).Google Scholar
12.Pohl, B., Grunebaum, M., Drews, M., Passerini, S., Winter, M., and Wiemhofer, H.-D.: Nitrile functionalized silyl ether with dissolved LiTFSI as new electrolyte solvent for lithium-ion batteries. Electrochim. Acta 180, 795800 (2015).Google Scholar
13.Pohl, B. and Wiemhofer, H.-D.: Highly thermal and electrochemical stable dinitrile disiloxane as co-solvent for use in lithium-ion batteries. J. Electrochem. Soc. 162, A460A464 (2015).Google Scholar
14.Horowitz, Y., Ben-Barak, I., Schneier, D., Goor-Dar, M., Kasnatscheew, J., Meister, P., Grunebaum, M., Wiemhofer, H.-D., Winter, M., Golodnitsky, D., and Peled, E.: Study of the formation of a solid electrolyte interphase (SEI) on a silicon nanowire anode in liquid disiloxane electrolyte with nitrile end groups for lithium-ion batteries. Batteries Supercaps 2, 213222 (2019).Google Scholar
15.Wang, J., Yong, T., Yang, J., Ouyand, C., and Zhang, L.: Organosilicon functionalized glycerol carbonates as electrolytes for lithium-ion batteries. RSC Adv. 5, 1766017666 (2015).Google Scholar
16.Phillip, M., Bhandary, R., Groche, F.J., Schonhoff, M., and Rieger, B.: Structure-property relationship and transport properties of structurally related silyl carbonate electrolytes. Electrochim. Acta 173, 687697 (2015).Google Scholar
17.Peña Hueso, J.A., Dong, J., Pollina, M., Usrey, M.L., Hamers, R.J., West, R.C., and Osmalov, D.: Halogenated organosilicon electrolytes, methods of using them, and electrochemical devices containing them. US Patent No. 0270573A1 (2015).Google Scholar
18.Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 1150411593 (2014).Google Scholar
19.Lyons, L.J., Peña Hueso, A., Johnson, T., and West, R.: Silyl and silyl/carbonate blend electrolytes for lithium-ion battery applications. ECS Trans. 73, 281288 (2016).Google Scholar
20.Ueda, S., Yamada, K., Konno, K., Hoshino, M., Kojima, K., and Tanaka, N.: A theoretical study of growth of solid-electrolyte-interphase films in lithium-ion batteries with organosilicon compounds. MRS Adv. 4, 801806 (2019).Google Scholar
21.Annat, G., MacFarlane, D.R., and Forsyth, M.: Transport properties in ionic liquids and ionic liquid mixtures: the challenges of NMR pulsed field gradient diffusion measurements. J. Phys. Chem. B 111, 90189024 (2007).Google Scholar
22.MacFarlane, D.R., Forsyth, M., Izgorodina, E.I., Abbott, A.P., Annat, G., and Fraser, K.: On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 49624967 (2009).Google Scholar
23.Lyons, L., Derrah, T., Sharpe, S., Yoon, S., Beecher, S., Usrey, M., Peña Hueso, A., Johnson, T., and West, R.: Enhancing ionic conductivity with fluorination in organosilyl solvents for LIB electrolytes. MRS Commun. (2019).Google Scholar
24.Hayamizu, K.: Temperature dependence of self-diffusion coefficients of ions and solvents in ethylene carbonate, propylene carbonate, and diethyl carbonate single solutions and ethylene carbonate + diethyl carbonate binary solutions of LiPF6 studied by NMR. J Chem. Eng. Data 57, 20122017 (2012).Google Scholar
25.Zhu, J., Lyons, L.J., and Hernandez, H.: Computational studies of LiPF6 salt dissociation in organosilicon nitrile electrolytes. In 256th American Chemical Society National Meeting; COMP, Poster, Boston, MA, August 22, 2018.Google Scholar
26.Stolwijk, N.A., Kosters, J., Wiencierz, M., and Schonhoff, M.: On the extraction of ion association data and transference numbers from ionic diffusivity and conductivity data in polymer electrolytes. Electrochim. Acta 102, 451458 (2013).Google Scholar
27.Krachkovskiy, S.A., Bezak, J.D., Fraser, S., Halalay, I.C., and Goward, G.R.: Determination of mass transfer parameters and ionic association of LiPF6: organic carbonates solutions. J. Electrochem. Soc. 164, A912A916 (2017).Google Scholar
28.Hou, J., Zhang, Z., and Madsen, L.A.: Cation/anion associations in ionic liquids modulated by hydration and ionic medium. J. Phys. Chem. B 115, 45764582 (2011).Google Scholar
29.Duluard, S., Grondin, J., Bruneel, J.-L., Pianet, I., Grelard, A., Campet, G., Delville, M.-H., and Lessegues, J.-C.: Lithium solvation and diffusion in the 1-butyl-3-methylimidazollium bis(trifluoromethanesulfonyl)imide ionic liquid. J. Raman Spectrosc. 39, 627632 (2008).Google Scholar
Supplementary material: PDF

Lyons et al. supplementary material

Lyons et al. supplementary material

Download Lyons et al. supplementary material(PDF)
PDF 387.6 KB