Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T10:42:50.190Z Has data issue: false hasContentIssue false

Brush-structured sulfur–polyaniline–graphene composite as cathodes for lithium–sulfur batteries

Published online by Cambridge University Press:  06 November 2019

Heguang Liu
Affiliation:
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Ruixuan Jing
Affiliation:
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Caiyin You
Affiliation:
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Qifeng Zhong*
Affiliation:
Department of Pharmaceutical Equipment and Electronic Instruments, School of Engineering, China Pharmaceutical University, Nanjing210009, China
*
Address all correspondence to Qifeng Zhong at [email protected]
Get access

Abstract

In this work, the authors report a facile method for the preparation of brush-structured nanocomposites of sulfur–polyaniline–graphene oxide (S–PANI–G) that were used for cathode materials of lithium–sulfur batteries (LSBs). The morphology and structure of composite were studied by x-ray photoelectron microscopy, transmission electron microscopy, scanning electron microscopy, and x-ray diffraction analysis. The nanocomposites exhibited good electrochemical performance involving good rate performance, high capacity, and promising cycling stability. The good performance of S–PANI–G results from the synergistic effect of sulfur, polyaniline, and graphene oxide. The composite and method reported here pave the way for the design and synthesis of novel cathode materials for LSBs.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Evers, S. and Nazar, L.F.: New approaches for high energy density lithium–sulfur battery cathodes. Acc. Chem. Res. 46, 1135 (2012).CrossRefGoogle ScholarPubMed
2.Chen, W., Lei, T., Qian, T., Lv, W., He, W., Wu, C., Liu, X., Liu, J., Chen, B., Yan, C., and Xiong, J.: A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium–sulfur battery. Adv. Energy Mater. 8, 1702889 (2018).CrossRefGoogle Scholar
3.Pang, Q., Kwok, C.Y., Kundu, D., Liang, X., and Nazar, L.F.: Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium–sulfur batteries. Joule 3, 136148 (2019).CrossRefGoogle Scholar
4.Ji, X., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009).CrossRefGoogle ScholarPubMed
5.Ellis, B.L., Lee, K.T., and Nazar, L.F.: Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691 (2010).CrossRefGoogle Scholar
6.Rana, M., Li, M., Huang, X., Luo, B., Gentlec, I., and Knibbe, R.: Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium–sulfur batteries. J. Mater. Chem. A 12, 65966615 (2019).CrossRefGoogle Scholar
7.Gueon, D., Hwang, J.T., Yang, S.B., Cho, E., Sohn, K., Yang, D.K., and Moon, J.H.: Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium–sulfur battery cathodes. ACS Nano 12, 226233 (2018).CrossRefGoogle ScholarPubMed
8.Pan, H., Han, K.S., Engelhard, M.H., Cao, R., Chen, J., Zhang, J.-G., Mueller, K.T., Shao, Y., and Liu, J.: Addressing passivation in lithium–sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 28, 1707234 (2018).CrossRefGoogle Scholar
9.Shim, J., Striebel, K.A., and Cairns, E.J.: The lithium/sulfur rechargeable cell effects of electrode composition and solvent on cell performance. J. Electrochem. Soc. 149, A1321 (2002).CrossRefGoogle Scholar
10.Dean, J.A.: Lange's Handbook of Chemistry, 3rd ed. (McGraw-Hill, New York, 1985).Google Scholar
11.Xiao, L., Cao, Y., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., Nie, Z., Exarhos, G.J., and Liu, J.: A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life. Adv. Mater. 24, 1176 (2012).CrossRefGoogle ScholarPubMed
12.Chung, S.H. and Manthiram, A.: Rational design of statically and dynamically stable lithium–sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio. Adv. Mater. 30, 1705951 (2018).CrossRefGoogle ScholarPubMed
13.Pang, Q., Shyamsunder, A., Narayanan, B., Kwok, C.Y., Curtiss, L.A., and Nazar, L.F.: Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3, 783 (2018).CrossRefGoogle Scholar
14.Wang, H., Yang, Y., Liang, Y., Robinson, J.T., Li, Y., Jackson, A., Cui, Y., and Dai, H.: Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644 (2011).CrossRefGoogle ScholarPubMed
15.Li, Y., and Chopra, N.: Progress in large-scale production of graphene. Part 2: vapor methods. JOM 67, 44 (2015).CrossRefGoogle Scholar
16.Li, Y., and Chopra, N.: Chemically modified and doped carbon nanotube-based nanocomposites with tunable thermal conductivity gradient. Carbon 77, 675 (2014).CrossRefGoogle Scholar
17.Wu, F., Chen, J., Chen, R., Wu, S., Li, L., Chen, S., and Zhao, T.: Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 115, 6057 (2011).CrossRefGoogle Scholar
18.Yu, X., Xie, J., Li, Y., Huang, H., Lai, C., and Wang, K.: Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries. J. Power Sources 146, 335 (2005).CrossRefGoogle Scholar
19.Chen, T., Ma, L., Cheng, B., Chen, R., Hu, Y., Zhu, G., Wang, Y., Liang, J., Tie, Z., Liu, J., and Jin, Z.: Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium–sulfur batteries. Nano Energy 38, 239248 (2017).CrossRefGoogle Scholar
20.Chong, W.G., Huang, J.-Q., Xu, Z.-L., Qin, X., Wang, X., and Kim, J.-K.: Lithium–sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers. Adv. Funct. Mater. 27, 1604815 (2017).CrossRefGoogle Scholar
21.Zheng, G., Zhang, Q., Cha, J.J., Yang, Y., Li, W., Seh, Z.W., and Cui, Y.: Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13, 1265 (2013).CrossRefGoogle ScholarPubMed
22.Li, Y., Shi, W., and Chopra, N.: Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon 100, 165 (2015).CrossRefGoogle Scholar
23.Li, K., Wang, B., Su, D., Park, J., Ahn, H., and Wang, G.: Enhance electrochemical performance of lithium–sulfur battery through a solution-based processing technique. J. Power Sources 202, 389 (2012).CrossRefGoogle Scholar
24.Chen, Z., Du, X.-L., He, J.-B., Li, F., Wang, Y., Li, Y.-L., Li, B., and Xin, S.: Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 9, 3385533862 (2017).CrossRefGoogle ScholarPubMed
25.Zhang, C., Wu, H.B., Yuan, C., Guo, Z., and Lou, X.W.: Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51, 9592 (2012).CrossRefGoogle ScholarPubMed
26.Seh, Z.W., Li, W.Y., Cha, J.J., Zheng, G.Y., Yang, Y., Mcdowell, M.T., Hsu, P.C., and Cui, Y.: Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2012).CrossRefGoogle Scholar
27.Li, Y., Dykes, J., Gilliam, T., and Chopra, N.: A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles. Nanoscale 9, 5263 (2017).CrossRefGoogle ScholarPubMed
28.Li, Y., and Chopra, N.: Graphene encapsulated gold nanoparticle-quantum dot heterostructures and their electrochemical characterization. Appl. Surf. Sci. 344, 27 (2015).CrossRefGoogle Scholar
29.Zhang, S.S.: Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344 (2012).CrossRefGoogle Scholar
30.Barchasz, C., Leprêtre, J.-C., Alloin, F., and Patoux, S.: New insights into the limiting parameters of the Li/S rechargeable cell. J. Power Source 199, 322 (2012).CrossRefGoogle Scholar
31.Zheng-Long, X., Kim, J.-K., and Kang, K.: Carbon nanomaterials for advanced lithium–sulfur batteries. Nano Today 19, 84107 (2018).Google Scholar
32.Xiao, P., Bu, F., Yang, G., Zhang, Y., and Xu, Y.: Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium–sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices. Adv. Mater. 29, 1703324 (2017).CrossRefGoogle ScholarPubMed
33.Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., and Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010).CrossRefGoogle ScholarPubMed
34.Li, L., Raji, A.-R.O., Fei, H., Yang, Y., Samuel, E.L.G., and Tour, J.M.: Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl. Mater. Interface 5, 6622 (2013).CrossRefGoogle ScholarPubMed
35.Xu, J., Wang, K., Zu, S.Z., Han, B.H., and Wei, Z.: Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4, 5019 (2010).CrossRefGoogle ScholarPubMed
36.Hu, L., Tu, J., Jiao, S., Hou, J., Zhu, H., and Fray, D.J.: In situ electrochemical polymerization of a nanorod-PANI–graphene composite in a reverse micelle electrolyte and its application in a supercapacitor. Phys. Chem. Chem. Phys. 14, 15652 (2012).CrossRefGoogle Scholar
37.Li, Y., Zhao, X., Yu, P., and Zhang, Q.: Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor. Langmuir 29, 493 (2012).CrossRefGoogle ScholarPubMed
38.Pascal, T.A., Villaluenga, I., Wujcik, K.H., Devaux, D., Jiang, X., Wang, D.R., Balsara, N., and Prendergast, D.: Liquid sulfur impregnation of microporous carbon accelerated by nanoscale interfacial effects. Nano Lett. 17, 25172523 (2017).CrossRefGoogle ScholarPubMed
39.Li, N., Zheng, M., Lu, H., Hu, Z., Shen, C., Chang, X., Ji, G., Cao, J., and Shi, Y.: High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem. Commun. 48, 4106 (2012).CrossRefGoogle ScholarPubMed
40.Li, Y., and Chopra, N.: Structural evolution of cobalt oxide-tungsten oxide nanowire heterostructures for photocatalysis. J. Catal. 329, 514 (2015).CrossRefGoogle Scholar
41.Yang, Y., Yu, G., Cha, J.J., Wu, H., Vosgueritchian, M., Yao, Y., Bao, Z., and Cui, Y.: Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5, 9187 (2011).CrossRefGoogle ScholarPubMed
42.Zu, C., Su, Y.-S., Fu, Y., and Manthiram, A.: Improved lithium–sulfur cells with a treated carbon paper interlayer. Phys. Chem. Chem. Phys. 15, 2291 (2013).CrossRefGoogle ScholarPubMed
43.Balach, J., Jaumann, T., and Giebeler, L.: Nanosized Li2S-based cathodes derived from MoS2 for high-energy density Li–S cells and Si–Li2S full cells in carbonate-based electrolyte. Energy Storage Mater. 8, 209216 (2017).CrossRefGoogle Scholar
Supplementary material: File

Liu et al. supplementary material

Table S1 and Figure S1

Download Liu et al. supplementary material(File)
File 162.2 KB