Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T10:56:03.290Z Has data issue: false hasContentIssue false

Anisotropic thermal conductivity in direction-specific black phosphorus nanoflakes

Published online by Cambridge University Press:  16 September 2019

Heguang Liu*
Affiliation:
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Jianxi Liu
Affiliation:
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, China
Ruixuan Jing
Affiliation:
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Caiyin You
Affiliation:
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
*
Address all correspondence to Heguang Liu at [email protected]
Get access

Abstract

Herein, the authors report our pioneering demonstration of the anisotropic thermal properties of black phosphorus (BP) nanoflakes. The nanoflakes were produced using a scotch tape-based mechanical exfoliation technique. Their thickness was characterized using Atomic Force Microscopy The anisotropic direction of the nanoflakes was determined by the Raman Spectroscopy equipped with a polarized laser. Then, a temperature-dependent Raman spectroscopy method was utilized to study the thermal transport properties of the BP nanoflakes. The results indicated that the thermal conductivities of zigzag BP and armchair nanoflakes are 30.6 and 12.6 W/m·K, respectively. This fundamental thermal study gives insight into the future fabrication of nanoscale electronic devices with thermal properties that can be well controlled.

Type
Research Letters
Copyright
Copyright © The Author(s) 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

1.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).CrossRefGoogle ScholarPubMed
2.Li, Y. and Chopra, N.: Progress in large-scale production of graphene. Part 2: vapor methods. JOM 67, 44 (2015).CrossRefGoogle Scholar
3.Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.Y., Galli, G., and Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271 (2010).CrossRefGoogle ScholarPubMed
4.Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., and Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007).10.1038/nmat1967CrossRefGoogle Scholar
5.Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett 105, 136805 (2010).CrossRefGoogle Scholar
6.Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Groenendijk, D., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W., Palacios, J.J., and Van der Zant, S.J.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).10.1088/2053-1583/1/2/025001CrossRefGoogle Scholar
7.Xia, F., Wang, H., and Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).10.1038/ncomms5458CrossRefGoogle ScholarPubMed
8.Li, Q., Huang, H., Chen, Z., Huang, X., Deng, K., Luo, S., and Quan, Z.: Thickness-dependent structural stability and anisotropy of black phosphorus. Adv. Electron. Mater. 5, 1800712 (2019).CrossRefGoogle Scholar
9.Liu, Y., Low, T., and Ruden, P.P.: Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities. Phys. Rev. B 93, 165402 (2016).10.1103/PhysRevB.93.165402CrossRefGoogle Scholar
10.Favron, A., Gaufrès, E., Fossard, F., Lévesque, P., Phaneuf-L'Heureux, A., Tang, N., and Martel, R.: Exfoliating pristine black phosphorus down to the monolayer: photo-oxidation and electronic confinement effects. arXiv Preprint 1408, 0345 (2014).Google Scholar
11.Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007).10.1038/nmat1849CrossRefGoogle ScholarPubMed
12.Tran, V., Soklaski, R., Liang, Y., and Yang, L.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).CrossRefGoogle Scholar
13.Li, Y., Shi, W., and Chopra, N.: Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon 100, 165 (2016).CrossRefGoogle Scholar
14.Li, Y., Dykes, J., Gilliam, T., and Chopra, N.: A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles. Nanoscale 9, 5263 (2017).CrossRefGoogle ScholarPubMed
15.Kang, J., Wood, J.D., Wells, S.A., Lee, J.-H., Liu, X., Chen, K.-S., and Hersam, M.C.: Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9, 3596 (2015).CrossRefGoogle ScholarPubMed
16.Liu, S., Huo, N., Gan, S., Li, Y., Wei, Z., Huang, B., and Chen, H.: Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. J. Mater. Chem. C 3, 10974 (2015).CrossRefGoogle Scholar
17.Li, Y., Hu, Z., Lin, S., Lai, S.K., Ji, W., and Lau, S.P.: Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain. Adv. Funct. Mater. 27, 1600986 (2017).CrossRefGoogle Scholar
18.Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., and Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033 (2014).10.1021/nn501226zCrossRefGoogle ScholarPubMed
19.Li, Y., Moy, E.C., Murthy, A.A., Hao, S., Cain, J.D., Hanson, E.D., and Chen, X.: Large-scale fabrication of MoS2 ribbons and their light-induced electronic/thermal properties: dichotomies in the structural and defect engineering. Adv. Funct. Mater. 28, 1704863 (2018).CrossRefGoogle Scholar
20.Chen, P., Li, N., Chen, X., Ong, W.J., and Zhao, X.: The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 5, 014002 (2017).CrossRefGoogle Scholar
21.Tao, J., Shen, W., Wu, S., Liu, L., Feng, Z., Wang, C., and Pang, W.: Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 9, 1136211370 (2015).CrossRefGoogle ScholarPubMed
22.Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).CrossRefGoogle ScholarPubMed
23.Li, Y. and Chopra, N.: Chemically modified and doped carbon nanotube-based nanocomposites with tunable thermal conductivity gradient. Carbon 77, 675 (2014).CrossRefGoogle Scholar
24.Yan, R., Simpson, J.R., Bertolazzi, S., Brivio, J., Watson, M., Wu, X., and Xing, H.G.: Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8, 986 (2014).CrossRefGoogle ScholarPubMed
25.Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011).10.1038/nmat3064CrossRefGoogle ScholarPubMed
26.Wang, X., Jones, A.M., Seyler, K.L., Tran, V., Jia, Y., Zhao, H., and Xia, F.: Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517 (2015).CrossRefGoogle ScholarPubMed
27.Mao, N., Zhang, S., Wu, J., Tian, H., Wu, J., Xu, H., and Zhang, J.: Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy. Nano Res. 11, 3154 (2018).CrossRefGoogle Scholar
28.Zhu, W., Liang, L., Roberts, R.H., Lin, J.F., and Akinwande, D.: Anisotropic electron–phonon interactions in angle-resolved Raman study of strained black phosphorus. ACS Nano 12, 12512 (2018).CrossRefGoogle ScholarPubMed
29.Lee, S., Yang, F., Suh, J., Yang, S., Lee, Y., Li, G., and Ko, C.: Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 6, 8573 (2015).CrossRefGoogle ScholarPubMed
30.Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R.P., Lundstrom, M.S., and Xu, X.: Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015).10.1038/ncomms9572CrossRefGoogle ScholarPubMed
31.Jeon, S.G., Shin, H., Jaung, Y.H., Ahn, J., and Song, J.Y.: Thickness-dependent and anisotropic thermal conductivity of black phosphorus nanosheets. Nanoscale 10, 5985 (2018).CrossRefGoogle ScholarPubMed
32.Islam, A., van den Akker, A., and Feng, P.X.L.: Anisotropic thermal conductivity of suspended black phosphorus probed by opto-thermomechanical resonance spectromicroscopy. Nano Lett. 18, 7683 (2018).10.1021/acs.nanolett.8b03333CrossRefGoogle ScholarPubMed