Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T10:38:57.537Z Has data issue: false hasContentIssue false

Polydiacetylene ribbons formed using the controlled evaporative self-assembly (CESA) method

Published online by Cambridge University Press:  12 October 2018

E. Van Keuren*
Affiliation:
Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC 20057, USA
C. Pornrungroj
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
C. Fu
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
X. Zhang
Affiliation:
Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington DC 20057, USA
S. Okada
Affiliation:
Graduate School of Organic Materials Science, Yamagata University, 3-16 Jonan, Yonezawa 982-8510, Japan
H. Katsuyama
Affiliation:
Graduate School of Organic Materials Science, Yamagata University, 3-16 Jonan, Yonezawa 982-8510, Japan
K. Kikuchi
Affiliation:
Graduate School of Organic Materials Science, Yamagata University, 3-16 Jonan, Yonezawa 982-8510, Japan
T. Onodera
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
H. Oikawa
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*
Address all correspondence to E. Van Keuren at [email protected]
Get access

Abstract

Methods for the control of molecular deposition and orientation are critical for the development of organic electronic devices. Here, we show the fabrication of ribbons of the optical material polydiacetylene (PDA) using a controlled evaporative self-assembly method. The ability to form these ribbons is highly dependent on both the side groups on the PDA as well as the solvent used in the preparation. Arrays of ribbons of one type of PDA, poly[1,6-di(N-carbazolyl)-2,4-hexadiyne], with widths on the order of 1–2 µm and lengths of 100s of micrometers, could be successfully obtained with good orientation.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ward, J.W., Lamport, Z.A., and Jurchescu, O.D.: Versatile organic transistors by solution processing. Chem. Phys. Chem. 16, 1118 (2015).Google Scholar
2.Sekine, C., Tsubata, Y., Yamada, T., Kitano, M., and Doi, S.: Recent progress of high performance polymer OLED and OPV materials for organic printed electronics. Sci. Technol. Adv. Mater. 15, 034203 (2014).Google Scholar
3.Gao, X. and Zhao, Z.: High mobility organic semiconductors for field-effect transistors. Sci. China-Chem. 58, 947 (2015).Google Scholar
4.Patel, B.B. and Diao, Y.: Multiscale assembly of solution-processed organic electronics: the critical roles of confinement, fluid flow, and interfaces. Nanotechnology 29, 044004 (2018).Google Scholar
5.Bi, S., He, Z., Chen, J., and Li, D.: Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors. AIP Adv. 5, 077170 (2015).Google Scholar
6.Han, W., Byun, M., Zhao, L., Rzayev, J., and Lin, Z.: Controlled evaporative self-assembly of hierarchically structured bottlebrush block copolymer with nanochannels. J. Mater. Chem. 21, 14248 (2011).Google Scholar
7.Liu, N., Zhou, Y., Wang, L., Peng, J., Wang, J., Pei, J., and Cao, Y.: In situ growing and patterning of aligned organic nanowire arrays via dip coating. Langmuir 25, 665 (2009).Google Scholar
8.Nakanishi, H. and Kasai, H.: Polydiacetylene microcrystals for third-order nonlinear optics. ACS Symp. Ser. 672, 183 (1997).Google Scholar
9.Oikawa, H.: Hybridized organic nanocrystals for optically functional materials. Bull. Chem. Soc. Jpn. 84, 233 (2011).Google Scholar
10.Camacho, M., Kar, A., Wherrett, B., Bakarezos, M., Rangel-Rojo, R., Yamada, S., Matsuda, H., Kasai, H., and Nakanishi, H.: All-optical switching potentiality in Fabry-Perot devices containing poly-DCHD. Opt. Commun. 251, 376 (2005).Google Scholar
11.Lee, J., Aleshin, A., Kim, D., Lee, H., Kim, Y., Wegner, G., Enkelmann, V., Roth, S., and Park, Y.: Field-effect mobility anisotropy in PDA-PTS single crystals. Synth. Met. 152, 169 (2005).Google Scholar
12.Nishide, J., Oyamada, T., Akiyama, S., Sasabe, H., and Adachi, C.: High field-effect mobility in an organic thin-film transistor with a solid-state polymerized polydiacetylene film as an active layer. Adv. Mater. 18, 3120 (2006).Google Scholar
13.Zou, G., Lim, E., Tamura, R., Kajimoto, N., Manaka, T., and Iwamoto, M.: Surface morphology and electrical transport properties of polydiacetylene-based organic field-effect transistors. Jpn. J. Appl. Phys. 45, 6436 (2006).Google Scholar
14.Koyanagi, T., Muratsubaki, M., Hosoi, Y., Shibata, T., Tsutsui, K., Wada, Y., and Furukawa, Y.: Organic field-effect transistor based on a thin film of polydiacetylene prepared from 10,12-pentacosadiynoic acid. Chem. Lett. 35, 20 (2006).Google Scholar
15.Wegner, G.: Topochemical reactions of monomers with conjugated triple-bonds. IV. Polymerization of bis-(p-toluene sulfonate) of 2.4-hexadiin-1.6-diol. Makromol. Chem. 145, 85 (1971).Google Scholar
16.Sandman, D.J., Samuelson, L.A., and Velazquez, C.S.: Synthesis and solid-state polymerization of urethane-substituted diacetylene monomers of improved purity. Polym. Commun. 27, 242 (1986).Google Scholar
17.Onodera, T., Oshikiri, T., Katagi, H., Kasai, H., Okada, S., Oikawa, H., Terauchi, M., Tanaka, M., and Nakanishi, H.: Nano-wire crystals of pi-conjugated organic materials. J. Cryst. Growth. 229, 586 (2001).Google Scholar
18.Iimori, Y., Onodera, T., Kasai, H., Mitsuishi, M., Miyashita, T., and Oikawa, H.: Fabrication of pseudo single crystalline thin films composed of polydiacetylene nanofibers and their optical properties. Opt. Mater. Express. 7, 2218 (2017).Google Scholar
19.Maillard, M., Motte, L., Ngo, A., and Pileni, M.: Rings and hexagons made of nanocrystals: a Marangoni effect. J. Phys. Chem. B. 104, 11871 (2000).Google Scholar
20.Ma, H., Dong, R., Horn, J.D., Hao, J., and Van Horn, J.D.: Spontaneous formation of radially aligned microchannels. Chem. Commun. 47, 2047 (2011).Google Scholar
21.Enkelmann, V.: Structural aspects of the topochemical polymerization of diacetylenes. Adv. Polym. Sci. 63, 91 (1984).Google Scholar
22.Tashiro, K., Nishimura, H., and Kobayashi, M.: First success in direct analysis of microscopic deformation mechanism of polydiacetylene single crystal by the x-ray imaging-plate system. Macromolecules 29, 8188 (1996).Google Scholar
23.Chung, H.R., Kwon, E., Oikawa, H., Kasai, H., and Nakanishi, H.: Effect of solvent on organic nanocrystal growth using the reprecipitation method. J. Cryst. Growth. 294, 459 (2006).Google Scholar
24.Hood, R., Muller, H., Eckhardt, C., Chance, R., and Yee, K.: Optical-properties of a polydiacetylene crystal––poly-[1,6-Di(N-carbazolyl)-2,4-hexadiyne]. Chem. Phys. Lett. 54, 295 (1978).Google Scholar
25.Wiebanga, E.H.: The crystal structure of diphenyldiacetylene. C6H5 C=C-C=C-C6H5. Z. Kristallogr. 102, 193 (1940).Google Scholar
26.Tieke, B., Bloor, D., and Young, R.: Solid-state polymerization of tricosa-10,12-diynoic acid. J. Mater. Sci. 17, 1156 (1982).Google Scholar
Supplementary material: File

Van Keuren et al. supplementary material

Figures S1-S5

Download Van Keuren et al. supplementary material(File)
File 1.2 MB