Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T10:43:35.622Z Has data issue: false hasContentIssue false

Modifying chemical composition of the fine Ni4Nb2O9 powders using chloride melts as reaction medium

Published online by Cambridge University Press:  20 September 2019

V. Khokhlov*
Affiliation:
Institute of High-Temperature Electrochemistry, 20 Akademicheskaya Str., 620990Ekaterinburg, Russia Ural Federal University, 19 Mira Str., 620002Ekaterinburg, Russia
I. Zakir'yanova
Affiliation:
Institute of High-Temperature Electrochemistry, 20 Akademicheskaya Str., 620990Ekaterinburg, Russia Ural Federal University, 19 Mira Str., 620002Ekaterinburg, Russia
V. Dokutovich
Affiliation:
Institute of High-Temperature Electrochemistry, 20 Akademicheskaya Str., 620990Ekaterinburg, Russia
G. Shekhtman
Affiliation:
Institute of High-Temperature Electrochemistry, 20 Akademicheskaya Str., 620990Ekaterinburg, Russia
B. Antonov
Affiliation:
Institute of High-Temperature Electrochemistry, 20 Akademicheskaya Str., 620990Ekaterinburg, Russia
I. Korzun
Affiliation:
Institute of High-Temperature Electrochemistry, 20 Akademicheskaya Str., 620990Ekaterinburg, Russia
S. Korotkov
Affiliation:
Institute of High-Temperature Electrochemistry, 20 Akademicheskaya Str., 620990Ekaterinburg, Russia
A. Pankratov
Affiliation:
Institute of High-Temperature Electrochemistry, 20 Akademicheskaya Str., 620990Ekaterinburg, Russia
N. Moskalenko
Affiliation:
Institute of High-Temperature Electrochemistry, 20 Akademicheskaya Str., 620990Ekaterinburg, Russia
*
Address all correspondence to V. Khokhlov at [email protected]
Get access

Abstract

Thermal stable chloride melts were used as the reaction medium for modifying the chemical composition of complex oxides ensuring a marked improvement of their working properties. This paper discusses the original results of the direct effect of molten KCl–CoCl2 mixtures on the fine Ni4Nb2O9 powders under argon- and oxygen-containing gaseous atmospheres at 500 °C. The initial Ni4Nb2O9 powder and the reaction products were studied in detail using the differential scanning calorimetry, thermogravimetry, x-ray diffractometry, Raman and IR spectroscopies, scanning electron microscopy, energy-dispersive x-ray spectroscopy, chemical analysis, and conductometry which demonstrated clearly the formation of the thermal stable single-phase Ni–Co niobates.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wichmann, R. and Mueller-Buschbaum, H.: Zur Kristallstruktur von Ni4Nb2O9. Z. Anorg. Allg. Chem. 525, 135 (1985).10.1002/zaac.19855250615CrossRefGoogle Scholar
2.Wichmann, R. and Mueller-Buschbaum, H.: Eine neue Kristallstruktur des Nickel-Oxoniobats: II-Ni4Nb2O9. Z. Anorg. Allg. Chem. 539, 203 (1986).10.1002/zaac.19865390821CrossRefGoogle Scholar
3.Kan, A., Ogawa, H., Yokoi, A., and Nakamura, Y.: Crystal structural refinement of corundum-structured A4M2O9 (A = Co and Mg, M = Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction. J. Eur. Ceram. Soc. 27, 2977 (2007).10.1016/j.jeurceramsoc.2006.11.064CrossRefGoogle Scholar
4.Santander, J., López, E., Diez, A., Dennehy, M., Pedernera, M., and Tonetto, G.: Ni–Nb mixed oxides: one-pot synthesis and catalytic activity for oxidative dehydrogenation of ethane. Chem. Eng. J. 255, 185 (2014).10.1016/j.cej.2014.06.048CrossRefGoogle Scholar
5.Heracleous, E. and Lemonidou, A.A.: Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: characterization and catalytic performance. J. Catal. 237, 162 (2006).10.1016/j.jcat.2005.11.002CrossRefGoogle Scholar
6.Zhu, H., Dong, H., Laveille, P., Saih, Y., Caps, V., and Basset, J.-M.: Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene. Catal. Today 228, 58 (2014).10.1016/j.cattod.2013.11.061CrossRefGoogle Scholar
7.Qiao, A., Kalevaru, V.N., Kumar, A., Lingaiah, N., Prasad, P.S., and Martin, A.: Effect of CO2-admixture on the catalytic performance of Ni–Nb–M–O catalysts in oxidative dehydrogenation of ethane to ethylene. DGMK Tagungsber. 3, 97 (2012).Google Scholar
8.Mirzaei, A., Sun, G.-J., Lee, J.K., Lee, C., Choi, S., and Kim, H.W.: Hydrogen sensing properties and mechanism of NiO–Nb2O5 composite nanoparticle-based electrical gas sensors. Ceram. Int. 43, 5247 (2017).CrossRefGoogle Scholar
9.Podkorytov, A.L., Shtin, S.A., Kashapova, A.S., Luppov, A.A., and Shubina, N.S.: Ga- and Ti-containing Ni4Nb2O9-based solid solutions for Ni-selective electrodes. Inorg. Mater. 49, 1044 (2013).10.1134/S002016851309015XCrossRefGoogle Scholar
10.Loiu, Y.-C.: Reaction-sintering process for preparing electronic ceramics. Recent Pat. Mater. Sci. 8, 225 (2015).CrossRefGoogle Scholar
11.Ehrenberg, H., Wltschek, G., Weitzel, H., Trouw, F., Buettner, J.H., Kroener, T., and Fuess, H.: Ferrimagnetism in Ni4Nb2O9. Phys. Rev. B 52, 9595 (1995).CrossRefGoogle ScholarPubMed
12.Tarakina, N.V., Nikulina, E.A., Hadermann, J., Kellerman, D.G., Tyutyunnik, A.P., Berger, I.F., Zubkov, V.G., and Van Tendeloo, G.: Crystal structure and magnetic properties of complex oxides Mg4−xNixNb2O9, 0≤x≤4. J. Solid State Chem. 180, 3180 (2007).10.1016/j.jssc.2007.09.007CrossRefGoogle Scholar
13.Khokhlov, V., Modenov, D., Dokutovich, V., Kochedykov, V., Zakir'yanova, I., Vovkotrub, E., and Beketov, I.: Lithium oxide solution in chloride melts as a medium to prepare LiCoO2 nanoparticles. MRS Commun. 4, 15 (2014).10.1557/mrc.2014.2CrossRefGoogle Scholar
14.Kamali, A.R. and Fray, D.J.: Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 40, 1835 (2014).10.1016/j.ceramint.2013.07.085CrossRefGoogle Scholar
15.Li, L., Deng, J., Chen, J., and Xing, X.: Topochemical molten salt synthesis for functional perovskite compounds. Chem. Sci. 7, 855 (2016).10.1039/C5SC03521JCrossRefGoogle ScholarPubMed
16.Burdese, A., Borlera, M.L., and Rolando, P.: Systems between niobium oxides and the oxides of nickel and cobalt. Atti Accad. Sci. Torino: I. Classe Sci. Fis. Mat. Nat 99, 565 (1964) (in Italian).Google Scholar
17.Khamman, O., Yimnirun, R., and Ananta, S.: Phase and morphology evolution of corundum-type Ni4Nb2O9 powders synthesized by solid-state reaction. Mater. Lett. 61, 2565 (2007).10.1016/j.matlet.2006.09.056CrossRefGoogle Scholar
18.Pantyukhina, M.I., Podkorytov, A.L., and Zhukovskii, V.M.: Phase equilibria, charge transport, and mass transport in Sr4Nb2O9–M4Nb2O9 (M = Cd, Cu, Ni, and Zn) systems. Russ. J. Inorg. Chem 55, 103 (2010).10.1134/S0036023610010201CrossRefGoogle Scholar
19.Liou, Y.-C., Tsai, Z.-S., Fung, K.-Z., and Liu, C.-Y.: Ni4Nb2O9 ceramics prepared by the reaction-sintering process. Ceram. Int. 36, 1887 (2010).10.1016/j.ceramint.2010.03.020CrossRefGoogle Scholar
20.Timofeev, A.L., Podkorytov, A.L., Shtin, S.A., Mal'tseva, V.O., Bamburov, A.D., and Marshenya, S.N.: Solid-state synthesis, characterization, and properties of Ni4Nb2O9-based solid solution. Inorg. Mater. 53, 869873 (2017).10.1134/S0020168517080179CrossRefGoogle Scholar
21.Khamman, O., Jainumpone, J., Watcharapasorn, A., and Ananta, S.: Fabrication, phase formation and microstructure of Ni4Nb2O9 ceramics fabricated by using the two-stage sintering technique. J. Korean Phys. Soc. 69, 365 (2016).10.3938/jkps.69.365CrossRefGoogle Scholar
22.Shtin, S.A., Podkorytov, A.L., Khlupin, Y.S., Kudakaeva, S.R., Sokolova, E.V., and Khuramshina, K.A.: Electrochemical properties of Ni4Nb2O9-based ceramics. Inorg. Mater. 46, 1274 (2010).10.1134/S002016851011021XCrossRefGoogle Scholar
23.Seifert, H.-J.: Über die Systeme Alkalimetallchlorid/Kobalt(II)-chlorid. Z. Anorg. Allg. Chem. 307, 137 (1961).10.1002/zaac.19613070305CrossRefGoogle Scholar
24.Robelin, C., Chartrand, P., and Pelton, A.D.: Thermodynamic evaluation and optimization of the (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system. J. Chem. Thermodyn. 36, 809 (2004).10.1016/j.jct.2004.05.005CrossRefGoogle Scholar
25.Shishkin, V.Y. and Mityaev, V.S.: Purification of alkali halides by zone melting method. Izv. USSR Acad. Sci. Inorg. Mater. 18, 1917 (1982) (in Russian).Google Scholar
26.Burylev, B.P., Mironov, V.L., Tsemekhman, L., and Sryvalin, I.T.: Equilibrium vapor pressures over molten salts in CoCl2–MCl systems. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 18, 663 (1975) (in Russian).Google Scholar
27.Alexander, L. and Klug, H.P.: Basic aspects of X-ray absorption in quantitative diffraction analysis of powder mixtures. Anal. Chem. 20, 886 (1948).10.1021/ac60022a002CrossRefGoogle Scholar
28.Bertaut, E.F., Corliss, L., and Forrat, F.: Etude niobates et tantalates de metaux de transition bivalents. J. Phys. Chem. Solids 21, 234 (1961).10.1016/0022-3697(61)90103-2CrossRefGoogle Scholar
29.Chaiyo, N., Muanghlua, R., Ruangphanit, A., Vittayakorn, W.C., and Vittayakorn, N.: Synthesis, phase formation and characterization of Co4Nb2O9 powders synthesized by solid-state reaction. Adv. Mater. Res. 55–57, 873 (2008).CrossRefGoogle Scholar
30.Polomska, M., Hilczer, B., Kosec, M., and Malič, B.: Raman scattering studies of lead free (1−x)K0.5 Na0.5NbO3–xSrTiO3 relaxors. Ferroelectrics 369, 149 (2008).CrossRefGoogle Scholar
31.Wang, J. and Luo, L.: The NbO6 octahedral distortion and phase structural transition of Eu3+-doped K0.5Na0.5NbO3–xLiNbO3 ferroelectric ceramics. J. Am. Ceram. Soc. 100, 1 (2017).Google Scholar
32.Tsygankov, V.N. and Safonov, V.V.: Electrical properties of the Nb2O5–NiO system. Inorg. Mater. 41, 1305 (2005).10.1007/s10789-005-0306-7CrossRefGoogle Scholar
33.Podkorytov, A.L., Shtin, S.A., Zhukovskii, V.M., and Pantyukhina, M.I.: Synthesis and properties of nickel-containing niobates. Russ. J. Inorg. Chem. 44, 796 (1999).Google Scholar
Supplementary material: File

Khokhlov et al. supplementary material

Figures S1-S5 and Tables S1-S2

Download Khokhlov et al. supplementary material(File)
File 1.8 MB