Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T09:05:19.492Z Has data issue: false hasContentIssue false

Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications

Published online by Cambridge University Press:  12 November 2012

Jeffrey S. Pulskamp
Affiliation:
US Army Research Laboratory, Adelphi, MD; [email protected]
Ronald G. Polcawich
Affiliation:
US Army Research Laboratory, Adelphi, MD; [email protected]
Ryan Q. Rudy
Affiliation:
University of Maryland, College Park; [email protected]
Sarah S. Bedair
Affiliation:
US Army Research Laboratory, Adelphi, MD; [email protected]
Robert M. Proie
Affiliation:
US Army Research Laboratory, Adelphi, MD; [email protected]
Tony Ivanov
Affiliation:
US Army Research Laboratory, Adelphi, MD
Gabriel L. Smith
Affiliation:
US Army Research Laboratory, Adelphi, MD; [email protected]
Get access

Abstract

Thin-film piezoelectric lead zirconate titanate (PZT) is one of the most efficient electromechanical coupling transducer materials currently available for microelectromechanical systems (MEMS). This article reviews piezoelectric MEMS (piezo MEMS) technologies using PZT thin films in radio frequency (RF) devices for communications and radar applications and in the emerging field of millimeter-scale robotics. The electromechanical material properties of thin-film PZT uniquely enable insect-inspired and insect-scale autonomous robots. Recent progress on large force and displacement actuators for robotic leg joints, compact and high torque ultrasonic motors, and bioinspired millimeter-scale flapping wing platforms will be presented. The use of thin-film PZT to achieve high performance and low-voltage RF MEMS switches, ultralow power consumption nanomechanical logic circuits, and high coupling and low loss resonators, filters, and transformers are also reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Uchino, K., Giniewicz, J.R., Micromechatronics (Marcel Dekker, New York, NY, 2003).CrossRefGoogle Scholar
Fujishima, S., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1 (2000).CrossRefGoogle Scholar
Kohli, M., Wuethrich, C., Brooks, K., Willing, B., Forster, M., Muralt, P., Setter, N., Ryser, P., Sens. Actuators, A 60, 147 (1997).CrossRefGoogle Scholar
Udayakumar, K.R., Moise, T.S., Summerfelt, S.R., Boku, K., Remack, K.A., Gertas, J., Haider, A., Obeng, Y., Martin, J.S., Rodriguez, J., Shinn, G., McKerrow, A., Eliason, J., Bailey, R., Fox, G.R., Jpn. J. Appl. Phys. 46, 2180 (2007).CrossRefGoogle Scholar
Gerfers, F., Kohlstadt, P.M., Ginsburg, E., Yuan He, M., Samara-Rubio, D., Manoli, Y., Wang, L.-P., in Solid State Circuits Technologies, Swart, J.W., Ed. (InTech, New York, 2010), pp. 333352.Google Scholar
Ruby, R., Bradley, P., Clark, D., Feld, D., Jamneala, T., Kun, W., in Proc. MTT-S Int. Microwave Symp. Dig. (2004), pp. 931934.Google Scholar
Trolier-McKinstry, S., Muralt, P., J. Electroceram. 12, 7 (2004).CrossRefGoogle Scholar
Muralt, P., Polcawich, R.G., Trolier-McKinstry, S., MRS Bull. 34, 658 (2009).CrossRefGoogle Scholar
Calame, F., Muralt, P., Appl. Phys. Lett. 90, 062907 (2007).CrossRefGoogle Scholar
Meitzler, A.H., Tiersten, H.F., Warner, A.W., Berlincourt, D., Coquin, G.A., Welsh, F.S. III, ANSI/IEEE Stand. 17 (1987).Google Scholar
Muralt, P., J. Am. Ceram. Soc. 91, 1385 (2008).CrossRefGoogle Scholar
Tadigadapa, S., Mateti, K., Meas. Sci. Technol. 20, 092001 (2009).CrossRefGoogle Scholar
Polcawich, R.G., Pulskamp, J.S. in MEMS Materials and Processes Handbook, 1st ed., Ghodssi, R., Lin, P., Eds. (Springer, New York, 2011), pp. 273344.CrossRefGoogle Scholar
Pulskamp, J.S., Polcawich, R.G., Oldham, K., in Proc. ASME 2009 IDETC/MNS (2009), p. 797.Google Scholar
Pulskamp, J.S., in Proc. SPIE 8373 (2012).Google Scholar
Oldham, K., Pulskamp, J., Polcawich, R., Ranade, P., Dubey, M., Integr. Ferroelectr. 95, 54 (2007).CrossRefGoogle Scholar
Morgan, B., Bedair, S., Pulskamp, J.S., Polcawich, R.G., Meyer, C., Dougherty, C., Lin, X., Arnold, D., Bashirullah, R., Miller, R., Roosz, M., Proc. SPIE 7679, 76790V–1 (2010).Google Scholar
Qiu, Z., Pulskamp, J.S., Lin, X., Rhee, C.-H., Wang, T., Polcawich, R.G., Oldham, K., J. Micromech. Microeng. 20, 1 (2010).CrossRefGoogle Scholar
Oldham, K., Pulskamp, J.S., Polcawich, R.G., Dubey, M., J. Microelectromech. Syst. 17, 890 (2008).CrossRefGoogle Scholar
Conway, N.J., Traina, A.J., Kim, S.-G., J. Micromech. Microeng. 17, 781 (2007).CrossRefGoogle Scholar
Seo, Y.H., Choi, D.-S., Lee, J.-H., Je, T.-J., Whang, K.-H., Sens. Actuators, A 127, 302 (2006).CrossRefGoogle Scholar
Edamana, B., Hahn, B., Pulskamp, J.S., Polcawich, R.G., Oldham, K., IEEE/ASME Trans. Mechatron. 16, 884 (2011).CrossRefGoogle Scholar
Tani, M., Akamatsu, M., Yasuda, Y., Toshiyoshi, H., in Proc. IEEE MEMS (2007), p. 699.Google Scholar
Oldham, K., Rhee, C.-H., Ryou, J.-H., Polcawich, R.G., Pulskamp, J.S., in Proc. ASME 2009 IDETC/MNS (2009), p. 759.Google Scholar
Flynn, A., Tavrow, L.S., Bart, S.F., Brooks, R.A., Ehrlich, D.J., Udayakmar, K.R., Cross, L.E., J. Microelectromech. Syst. 1, 1 (1992).CrossRefGoogle Scholar
Ueha, S., Tomikawa, Y., Ultrasonic Motors: Theory and Applications (Oxford University Press, New York, 1993).Google Scholar
Uchino, K., Smart Mater. Struct. 7, 273 (1998).CrossRefGoogle Scholar
Smith, G.L., Rudy, R.Q., Polcawich, R.G., Devoe, D.L., Sens. Actuators, A (2011), doi:10.1016/j.sna.2011.12.029.Google Scholar
Rudy, R.Q., Smith, G.L., DeVoe, D.L., Polcawich, R.G., 2012 Solid State Sensor, Actuator and Microsystems Workshop (Hilton Head, SC, 2012), June 3–7, 2012, pp. 417–420.Google Scholar
Wood, R.J., IEEE Trans. Rob. 24 (2), 341 (2008).CrossRefGoogle Scholar
Avadhunula, S., Wood, R.J., Campolo, D., Fearing, R.S., in Proc. IEEE Int. Conf. Rob. Autom. (2002), p. 52.Google Scholar
Bronson, J., Pulskamp, J.S., Polcawich, R.G., Kronigner, C., Wetzel, E., in Proc. IEEE MEMS (2009), p. 1047.Google Scholar
Pulskamp, J., Smith, G., Polcawich, R., Kroninger, C., Wetzel, E., in Proc. 2010 Solid State Sensor, Actuator and Microsystems Workshop (2010), p. 390.Google Scholar
Ellington, C.P., J. Exp. Biol. 202, 3439 (1999).CrossRefGoogle Scholar
Piazza, G., Stepanou, P.J., Pisano, A.P., J. Microelectromech. Syst. 15, 1406 (2006).CrossRefGoogle Scholar
Bedair, S., Pulskamp, J., Morgan, B., Polcawich, R., in Proc. Power MEMS 2009 (2009), pp. 435439.Google Scholar
Gross, S.J., Tadigadapa, S., Jackson, T.N., Trolier-McKinstry, S., Zhang, Q.Q., Appl. Phys. Lett. 83, 174 (2003).CrossRefGoogle Scholar
Lee, H.-C., Park, J.-H., Park, J.-Y., Nam, H.-J., Bu, J.-U., J. Micromech. Microeng. 15, 2098 (2005).CrossRefGoogle Scholar
Polcawich, R.G., Pulskamp, J.S., Judy, D., Ranade, P., Trolier-McKinstry, S., Dubey, M., IEEE Trans. Microwave Theory Tech. 55, 2642 (2007).CrossRefGoogle Scholar
Polcawich, R.G., Judy, D., Pulskamp, J.S., Trolier-McKinstry, S., Dubey, M., IEEE MTT-S Microwave Symp. (2007), p. 2083.Google Scholar
Chung, D.J., Polcawich, R.G., Judy, D., Pulskamp, J., Papapolymerou, J., IEEE MTT-S Microwave Symp. (2008), p. 21.Google Scholar
Ivanov, T.G., Pulskamp, J.S., Polcawich, R.G., Proie, R.M., IEEE MTT-S Microwave Symp. (2012), in press.Google Scholar
Ivanov, T.G., Proie, R.M., Pulskamp, J.S., Polcawich, R.G., Zaghloul, A., Solid State Sensor, Actuator and Microsystems Workshop (Hilton Head Island, SC, 2012), p. 389.Google Scholar
International Technology Roadmap for Semiconductors (ITRS, 2000–2007); www.itrs.net/reports.html.Google Scholar
Judy, D.C., Polcawich, R.G., Pulskamp, J.S., Solid State Sensor, Actuator and Microsystems Workshop (Hilton Head Island, SC, 2008), p. 328.Google Scholar
Proie, R.M., Polcawich, R.G., Pulskamp, J.S., Ivanov, T., Zaghloul, M.E., J. MEMS 20, 1032 (2011).CrossRefGoogle Scholar
McFarland, G., Flynn, M. (Tech. Rep. CSL-TR-95–662, Stanford University, 1995).Google Scholar
Larson, J.D., Gilbert, S.R., Xu, B., in Proc. IEEE Ultrasonics Symp. (2004), p. 173.Google Scholar
Pulskamp, J.S., Bedair, S.S., Polcawich, R.G., Judy, D., Bhave, S.A., in Proc. IEEE Freq. Control Symp. (2011), p. 1.Google Scholar
Bedair, S.S., Pulskamp, J.S., Polcawich, R.G., Judy, D., Gillon, A., Bhave, S., Morgan, B., in Proc. IEEE MEMS (2012), p. 708.Google Scholar
Bedair, S.S., Judy, D., Pulskamp, J., Polcawich, R.G., Gillion, A., Hwang, E., Bhave, S., Appl. Phys. Lett. 99, 1 (2011).CrossRefGoogle Scholar
Pulskamp, J.S., Judy, D.C., Polcawich, R.G., Kaul, R., Chandrahalim, H., Bhave, S.A., in Proc. IEEE MEMS 900 (2009).Google Scholar
Pulskamp, J.S., Bedair, S.S., Polcawich, R.G., Smith, G.L., Martin, J., Power, B., Bhave, S.A., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1043 (2012).CrossRefGoogle Scholar
Rosen, C.A., in Proc. Electronic Comp. Symp. (1956), p. 205.Google Scholar
Carazo, A., in Proc. Mater. Res. Soc. Symp. (2004), p. D1.7.1.Google Scholar