No CrossRef data available.
Article contents
Microstructural Characterization of Carbon Fiber-Reinforced Laminated Matrix Composites of Silicon Carbide and Carbon
Published online by Cambridge University Press: 02 July 2020
Extract
Silicon carbide composites are known for high-temperature strength retention, creep resistance, high elastic modulus and light weight. Laminated matrix composites (LMC's) with a matrix of alternating layers of silicon carbide (SiC) and carbon (C) with carbon fiber reinforcements possess added toughness in addition to the desirable properties of SiC composites mentioned above. The improved toughness results from both the laminated matrix, which offers a tortuous path to crack propagation, and the energy expended in fiber debonding during fracture. Microstructural analyses of LMC's are necessary to help the processing effort to achieve structures with the desired properties. In this work, a preliminary examination of the microstructure of the laminated matrix composite is undertaken using TEM.
Specimens for TEM examination were prepared by cutting slices from a bulk sample of ∼ 1 mm thickness with a low-speed diamond saw. The slices were then ground to no less than 200 μm thickness to prevent the slices from breaking.
- Type
- Microscopy of Ceramics and Minerals
- Information
- Copyright
- Copyright © Microscopy Society of America