Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T05:05:55.890Z Has data issue: false hasContentIssue false

Functional Analysis of the Chloroplast Division Complex Using Schizosaccharomyces pombe as a Heterologous Expression System

Published online by Cambridge University Press:  26 February 2016

Allan D. TerBush
Affiliation:
Biochemistry and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824, USA Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
Chris A. Porzondek
Affiliation:
Biochemistry and Molecular Biology Undergraduate Program, Michigan State University, East Lansing, MI 48824, USA Neuroscience Undergraduate Program, Michigan State University, East Lansing, MI 48824, USA
Katherine W. Osteryoung*
Affiliation:
Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
*
*Corresponding author. [email protected]
Get access

Abstract

Chloroplast division is driven by a macromolecular complex that assembles at the midplastid. The FtsZ ring (Z ring) is the central structure in this complex, and is composed of the functionally distinct cytoskeletal proteins FtsZ1 and FtsZ2. Recent studies in the heterologous Schizosaccharomyces pombe system showed that Arabidopsis FtsZ1 and FtsZ2 filaments have distinct assembly and turnover characteristics. To further analyze these FtsZs, we employed this system to compare the assembly and dynamic properties of FtsZ1 and FtsZ2 lacking their N- and/or C-termini with those of their full-length counterparts. Our data provide evidence that the N-terminus of FtsZ2 is critical for its structural dominance over FtsZ1, and that the N- and C-termini promote polymer bundling and turnover of both FtsZs and contribute to their distinct behaviors. We also assessed how ARC6 affects FtsZ2 filament dynamics, and found that it interacts with and stabilizes FtsZ2 filaments in S. pombe independent of its presumed Z-ring tethering function in planta. Finally, we generated FtsZ1-FtsZ2 coexpression constructs to facilitate reconstitution of more complex interaction networks. Our experiments yield new insight into factors influencing FtsZ behavior and highlight the utility of S. pombe for analyzing chloroplast FtsZs and their assembly regulators.

Type
Special Issue on Imaging Plant Biology
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D.E., Gueiros-Filho, F.J. & Erickson, H.P. (2004). Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J Bacteriol 186(17), 57755781.CrossRefGoogle ScholarPubMed
Basi, G., Schmid, E. & Maundrell, K. (1993). TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123(1), 131136.CrossRefGoogle ScholarPubMed
Bolte, S. & Cordelières, F.P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(Pt 3), 213232.CrossRefGoogle ScholarPubMed
Buske, P.J. & Levin, P.A. (2012). Extreme C terminus of the bacterial cytoskeletal protein FtsZ plays a fundamental role in assembly independent of modulatory proteins. J Biol Chem 287, 1094510957.CrossRefGoogle Scholar
Chen, Y., Anderson, D.E., Buske, M. & Erickson, H.P. (2007). Assembly dynamics of Mycobacterium tuberculosis FtsZ. J Biol Chem 282(38), 2773627743.CrossRefGoogle ScholarPubMed
Chen, Y. & Erickson, H.P. (2005). Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer. J Biol Chem 280(23), 2254922554.CrossRefGoogle ScholarPubMed
Chen, Y. & Erickson, H.P. (2009). FtsZ filament dynamics at steady state: Subunit exchange with and without nucleotide hydrolysis. Biochemistry 48(28), 66646673.CrossRefGoogle ScholarPubMed
Colletti, K.S., Tattersall, E.A., Pyke, K.A., Froelich, J.E., Stokes, K.D. & Osteryoung, K.W. (2000). A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus. Curr Biol 10(9), 507516.CrossRefGoogle ScholarPubMed
Edgar, R.C. (2004 a). MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 119.CrossRefGoogle ScholarPubMed
Edgar, R.C. (2004 b). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5), 17921797.CrossRefGoogle ScholarPubMed
El-Kafafi, E.-S., Mukherjee, S., El-Shami, M., Putaux, J.-L., Block, M.A., Pignot-Paintrand, I., Lerbs-Mache, S. & Falconet, D. (2005). The plastid division proteins, FtsZ1 and FtsZ2, differ in their biochemical properties and sub-plastidial localization. Biochem J 387(Pt 3), 669676.CrossRefGoogle ScholarPubMed
Erickson, H.P., Anderson, D.E. & Osawa, M. (2010). FtsZ in bacterial cytokinesis: Cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74(4), 504528.CrossRefGoogle ScholarPubMed
Forsburg, S.L. (1993). Comparison of Schizosaccharomyces pombe expression systems. Nucleic Acids Res 21(12), 29552956.CrossRefGoogle ScholarPubMed
Gao, H., Kadirjan-Kalbach, D., Froehlich, J.E. & Osteryoung, K.W. (2003). ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc Natl Acad Sci U S A 100(7), 43284333.CrossRefGoogle ScholarPubMed
Gibson, D.G., Young, L., Chuang, R.-Y., Venter, J.C., Hutchison, C.A. & Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5), 343345.CrossRefGoogle ScholarPubMed
Glynn, J.M., Froehlich, J.E. & Osteryoung, K.W. (2008). Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space. Plant Cell 20(9), 24602470.CrossRefGoogle ScholarPubMed
Glynn, J.M., Yang, Y., Vitha, S., Schmitz, A.J., Hemmes, M., Miyagishima, S.-Y. & Osteryoung, K.W. (2009). PARC6, a novel chloroplast division factor, influences FtsZ assembly and is required for recruitment of PDV1 during chloroplast division in Arabidopsis. Plant J 59(5), 700711.CrossRefGoogle ScholarPubMed
Gould, S.B., Waller, R.F. & McFadden, G.I. (2008). Plastid evolution. Annu Rev Plant Biol 59, 491517.Google ScholarPubMed
Hauser, M., Eichelmann, H., Heber, U. & Laisk, A. (1995). Chloroplast Ph values and buffer capacities in darkened leaves as revealed by CO2 solubilization in vivo . Planta 196(2), 199204.CrossRefGoogle Scholar
Itoh, R., Fujiwara, M., Nagata, N. & Yoshida, S. (2001). A chloroplast protein homologous to the eubacterial topological specificity factor mine plays a role in chloroplast division. Plant Physiol 127(4), 16441655.CrossRefGoogle Scholar
Johnson, C.B., Shaik, R., Abdallah, R., Vitha, S. & Holzenburg, A. (2015). FtsZ1/FtsZ2 turnover in chloroplasts and the role of ARC3. Micros Microanal 21, 313323.CrossRefGoogle ScholarPubMed
Johnson, C.B., Tang, L.K., Smith, A.G., Ravichandran, A., Luo, Z., Vitha, S. & Holzenburg, A. (2013). Single particle tracking analysis of the chloroplast division protein FtsZ anchoring to the inner envelope membrane. Micros Microanal 19(3), 16.CrossRefGoogle Scholar
Li, Z., Trimble, M.J., Brun, Y.V. & Jensen, G.J. (2007). The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26, 46944708.CrossRefGoogle ScholarPubMed
Lohse, S., Hause, B., Hause, G. & Fester, T. (2006). FtsZ characterization and immunolocalization in the two phases of plastid reorganization in arbuscular mycorrhizal roots of medicago truncatula . Plant Cell Physiol 47(8), 11241134.CrossRefGoogle ScholarPubMed
Maple, J., Aldridge, C. & Møller, S.G. (2005). Plastid division is mediated by combinatorial assembly of plastid division proteins. Plant J 43(6), 811823.CrossRefGoogle ScholarPubMed
Maple, J., Chua, N.H. & Moller, S.G. (2002). The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis . Plant J 31(3), 269277.CrossRefGoogle ScholarPubMed
Maple, J., Vojta, L., Soll, J. & Moller, S.G. (2007). ARC3 is a stromal Z-ring accessory protein essential for plastid division. EMBO Rep 8(3), 293299.CrossRefGoogle ScholarPubMed
Marrison, J.L., Rutherford, S.M., Robertson, E.J., Lister, C., Dean, C. & Leech, R.M. (1999). The distinctive roles of five different ARC genes in the chloroplast division process in Arabidopsis . Plant J 18(6), 651662.CrossRefGoogle ScholarPubMed
Maundrell, K. (1990). nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J Biol Chem 265(19), 1085710864.CrossRefGoogle ScholarPubMed
Maundrell, K. (1993). Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123(1), 127130.CrossRefGoogle ScholarPubMed
McAndrew, R.S., Froehlich, J.E., Vitha, S., Stokes, K.D. & Osteryoung, K.W. (2001). Colocalization of plastid division proteins in the chloroplast stromal compartment establishes a new functional relationship between FtsZ1 and FtsZ2 in higher plants. Plant Physiol 127(4), 16561666.CrossRefGoogle ScholarPubMed
Milam, S.L., Osawa, M. & Erickson, H.P. (2012). Negative-stain electron microscopy of inside-out FtsZ rings reconstituted on artificial membrane tubules show ribbons of protofilaments. Biophys J 103, 5968.CrossRefGoogle ScholarPubMed
Miyagishima, S.-Y., Takahara, M., Mori, T., Kuroiwa, H., Higashiyama, T. & Kuroiwa, T. (2001). Plastid division is driven by a complex mechanism that involves differential transition of the bacterial and eukaryotic division rings. Plant Cell 13(10), 22572268.CrossRefGoogle Scholar
Mori, T., Kuroiwa, H., Takahara, M., Miyagishima, S.Y. & Kuroiwa, T. (2001). Visualization of an FtsZ ring in chloroplasts of lilium longiflorum leaves. Plant Cell Physiol 42(6), 555559.CrossRefGoogle ScholarPubMed
Mukherjee, A. & Lutkenhaus, J. (1999). Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations. J Bacteriol 181(3), 823832.CrossRefGoogle ScholarPubMed
Nagai, T., Ibata, K., Park, E.S., Kubota, M., Mikoshiba, K. & Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20(1), 8790.CrossRefGoogle ScholarPubMed
Nakanishi, H., Suzuki, K., Kabeya, Y. & Miyagishima, S.Y. (2009). Plant-specific protein MCD1 determines the site of chloroplast division in concert with bacteria-derived MinD. Curr Biol 19(2), 151156.CrossRefGoogle ScholarPubMed
Olson, B.J.S.C., Wang, Q. & Osteryoung, K.W. (2010). GTP-dependent heteropolymer formation and bundling of chloroplast FtsZ1 and FtsZ2. J Biol Chem 285(27), 2063420643.CrossRefGoogle ScholarPubMed
Osawa, M., Anderson, D.E. & Erickson, H.P. (2008). Reconstitution of contractile FtsZ Rings in liposomes. Science 320(5877), 792794.CrossRefGoogle ScholarPubMed
Osawa, M. & Erickson, H.P. (2011). Inside-out Z rings—constriction with and without GTP hydrolysis. Mol Microbiol 81(2), 571579.CrossRefGoogle ScholarPubMed
Osteryoung, K.W. & Pyke, K.A. (2014). Division and dynamic morphology of plastids. Ann Rev Plant Biol 65, 443472.CrossRefGoogle ScholarPubMed
Osteryoung, K.W., Stokes, K.D., Rutherford, S.M., Percival, A.L. & Lee, W.Y. (1998). Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ . Plant Cell 10(12), 19912004.CrossRefGoogle ScholarPubMed
Osteryoung, K.W. & Vierling, E. (1995). Conserved cell and organelle division. Nature 376(6540), 473474.CrossRefGoogle ScholarPubMed
Popp, D., Iwasa, M., Narita, A., Erickson, H.P. & Maeda, Y. (2009). FtsZ condensates: An in vitro electron microscopy study. Biopolymers 91(5), 340350.CrossRefGoogle Scholar
Rabut, G. & Ellenberg, J. (2005). Photobleaching techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, iFRAP, and FLIP. In Live Cell Imaging: A Laboratory Manual, Goldman, R.D.a.S.D.L. (Ed.), pp. 101126. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Rizzo, M. & Piston, D. (2005). Optimization of cyan fluorescent protein fluorescence for förster resonance energy transfer. Micros Microanal 11(S02), 12.CrossRefGoogle Scholar
Robert, X. & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42(Web Server issue), W320W324.CrossRefGoogle ScholarPubMed
Schmitz, A.J., Glynn, J.M., Olson, B.J.S.C., Stokes, K.D. & Osteryoung, K.W. (2009). Arabidopsis FtsZ2-1 and FtsZ2-2 are functionally redundant, but FtsZ-based plastid division is not essential for chloroplast partitioning or plant growth and development. Mol Plant 2(6), 12111222.CrossRefGoogle ScholarPubMed
Shimada, H., Koizumi, M., Kuroki, K., Mochizuki, M., Fujimoto, H., Ohta, H., Masuda, T. & Takamiya, K. (2004). ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase. Plant Cell Physiol 45(8), 960967.CrossRefGoogle ScholarPubMed
Smith, A.G., Johnson, C.B., Vitha, S. & Holzenburg, A. (2010). Plant FtsZ1 and FtsZ2 expressed in a eukaryotic host: GTPase activity and self-assembly. FEBS Lett 584(1), 166172.CrossRefGoogle Scholar
Srinivasan, R., Mishra, M., Murata-Hori, M. & Balasubramanian, M.K. (2007). Filament formation of the Escherichia coli actin-related protein, MreB, in fission yeast. Curr Biol 17(3), 266272.CrossRefGoogle ScholarPubMed
Srinivasan, R., Mishra, M., Wu, L., Yin, Z. & Balasubramanian, M.K. (2008). The bacterial cell division protein FtsZ assembles into cytoplasmic rings in fission yeast. Genes Dev 22(13), 17411746.CrossRefGoogle ScholarPubMed
Stricker, J., Maddox, P., Salmon, E.D. & Erickson, H.P. (2002). Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci U S A 99(5), 31713175.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10), 27312739.CrossRefGoogle ScholarPubMed
TerBush, A.D. & Osteryoung, K.W. (2012). Distinct functions of chloroplast FtsZ1 and FtsZ2 in Z-ring structure and remodeling. J Cell Biol 199(4), 623637.CrossRefGoogle ScholarPubMed
TerBush, A.D., Yoshida, Y. & Osteryoung, K.W. (2013). FtsZ in chloroplast division: Structure, function and evolution. Curr Opin Cell Biol 25(4), 461470.CrossRefGoogle ScholarPubMed
Vaughan, S., Wickstead, B., Gull, K. & Addinall, S.G. (2004). Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J Mol Evol 58(1), 1929.CrossRefGoogle ScholarPubMed
Vitha, S., Froehlich, J.E., Koksharova, O., Pyke, K.A., van Erp, H. & Osteryoung, K.W. (2003). ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. Plant Cell 15(8), 19181933.CrossRefGoogle Scholar
Vitha, S., McAndrew, R.S. & Osteryoung, K.W. (2001). FtsZ ring formation at the chloroplast division site in plants. J Cell Biol 153(1), 111119.CrossRefGoogle ScholarPubMed
Wu, J.-Q. & Pollard, T.D. (2005). Counting cytokinesis proteins globally and locally in fission yeast. Science 310(5746), 310314.CrossRefGoogle ScholarPubMed
Yoder, D.W., Kadirjan-Kalbach, D., Olson, B.J.S.C., Miyagishima, S.Y., DeBlasio, S.L., Hangarter, R.P. & Osteryoung, K.W. (2007). Effects of mutations in arabidopsis FtsZ1 on plastid division, FtsZ ring formation and positioning, and FtsZ filament morphology in vivo . Plant Cell Physiol 48(6), 775791.CrossRefGoogle ScholarPubMed
Yoshida, Y., Kuroiwa, H., Misumi, O., Yoshida, M., Ohnuma, M., Fujiwara, T., Yagisawa, F., Hirooka, S., Imoto, Y., Matsushita, K., Kawano, S. & Kuroiwa, T. (2010). Chloroplasts divide by contraction of a bundle of nanofilaments consisting of polyglucan. Science 329(5994), 949953.CrossRefGoogle ScholarPubMed
Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. (2002). Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296(5569), 913916.CrossRefGoogle ScholarPubMed
Zehr, E.A., Kraemer, J.A., Erb, M.L., Coker, J.K.C., Montabana, E.A., Pogliano, J. & Agard, D.A. (2014). The structure and assembly mechanism of a novel three-stranded tubulin filament that centers phage DNA. Structure 22(4), 539548.CrossRefGoogle ScholarPubMed
Zhang, M., Chen, C., Froehlich, J.E., TerBush, A.D. & Osteryoung, K.W. (2016). Roles of Arabidopsis PARC6 in coordination of the chloroplast division complex and negative regulation of FtsZ assembly. Plant Physiol 170, 250262.CrossRefGoogle ScholarPubMed
Zhang, M., Schmitz, A.J., Kadirjan-Kalbach, D.K., TerBush, A.D. & Osteryoung, K.W. (2013). Chloroplast division protein ARC3 regulates chloroplast FtsZ-ring assembly and positioning in arabidopsis through interaction with FtsZ2. Plant Cell 25(5), 17871802.CrossRefGoogle ScholarPubMed
Supplementary material: Image

TerBush supplementary material

Figure S1

Download TerBush supplementary material(Image)
Image 29 MB
Supplementary material: Image

TerBush supplementary material

Figure S2

Download TerBush supplementary material(Image)
Image 4.9 MB
Supplementary material: File

TerBush supplementary material

Table S1 and Figures S1-S2 Legend

Download TerBush supplementary material(File)
File 127.4 KB