Article contents
Electrostatic Aberration Correction in LV-SEM
Published online by Cambridge University Press: 02 July 2020
Extract
The resolution of a low-voltage electron microscope is limited by the chromatic and spherical aberration of the objective lens, see Fig. 1. The design of state-of-the-art objective lenses is optimised for minimal aberrations. Any significant improvement of the resolution requires an aberration corrector. Recently, correction of both Cc and Cs has been demonstrated in SEM, using a combination of magnetic and electrostatic quadrupoles and octupoles (Zach and Haider, 1995). The present paper presents an alternative design, which is based on a purely electrostatic concept, potentially simplifying the ease-of-use of an aberration corrected microscope.
In 1936 Scherzer showed that the fundamental lens aberrations of round lenses are positive definite, in absence of time-varying fields and/or space charge. Negative lens aberrations, required for the correction of Cc and Cs, can only be obtained using non-round lenses, e.g. quadrupoles and octupoles (Scherzer, 1947).
- Type
- Low Voltage Scanning Electron Microscopy and X-Ray Microanalysis
- Information
- Microscopy and Microanalysis , Volume 6 , Issue S2: Proceedings: Microscopy & Microanalysis 2000, Microscopy Society of America 58th Annual Meeting, Microbeam Analysis Society 34th Annual Meeting, Microscopical Society of Canada/Societe de Microscopie de Canada 27th Annual Meeting, Philadelphia, Pennsylvania August 13-17, 2000 , August 2000 , pp. 746 - 747
- Copyright
- Copyright © Microscopy Society of America
References
References:
- 4
- Cited by