Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T13:58:39.075Z Has data issue: false hasContentIssue false

Ion heating as a limiting process in CO2 laser induced Brillouin scattering

Published online by Cambridge University Press:  09 March 2009

R. Giles
Affiliation:
Department of Electrical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G7
A. A. Offenberger
Affiliation:
Department of Electrical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G7

Abstract

Two complementary models invoking ion heating are presented which, together with pump depletion, quantitatively account for the principal observations (reflectivity, spectral shape, saturation) of stimulated Brillouin scattering (SBS) in a CO2 laser/plasma interaction experiment. A simple energy balance model, which incorporates ion heating and includes a consistent calculation of ion wave damping, is applicable for steady state convective growth of the ion waves (long interaction times). A more refined model, which includes a calculation of the trapped ion fraction (along with heating), is applicable for SBS in a transient regime. Strong ion wave damping has been consistently observed in both cases in our high intensity CO2 laser/plasma scattering experiments. A variety of measurements have been made to investigate the basic features of SBS and associated density fluctuations for both long pulse (40 ns) and short pulse (2 ns) CO2 laser irradiation. Measured parameters reported here include plasma density, temperature, density scalelength, SBS reflectivity, and spectral characteristics. Together with previous measurements of density fluctuations (amplitude, wavenumber spectra, spatial and temporal information), the observed behavior confirms that Brillouin scattering is dominated by strong ion trapping, heating and ion wave damping for the laser/plasma parameters prevailing in these experiments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bobin, J. L. et al. 1973 Phys. Rev. Lett. 30, 594.CrossRefGoogle Scholar
Bornatici, M. 1975 J. Plasma Physics 14, 105.CrossRefGoogle Scholar
Burnett, N. H. & Offenberger, A. A. 1973 J. Appl. Phys. 44, 3617.CrossRefGoogle Scholar
Burnett, N. H. et al. 1978 Phys. Can. 34, 26.Google Scholar
Clayton, C. E., Joshi, C. & Chen, F. F. 1983 Phys. Rev. Lett. 51, 1656.CrossRefGoogle Scholar
Clayton, C. E. et al. 1981 Phys. Fluids. 24, 2312.CrossRefGoogle Scholar
Cohen, B. I. & Max, C. E. 1979 Phys. Fluids 22, 1115.CrossRefGoogle Scholar
Drake, J. F.et at. 1974 Phys. Fluids 17, 778.CrossRefGoogle Scholar
Eidmann, K. & Sigel, R. 1974 Laser Interaction and Related Plasma Phenomena, Vol. 3, Plenum Press, New York, N.Y. p. 667.CrossRefGoogle Scholar
Estabrook, K. et al. 1981 Phys. Rev. Lett. 46, 724 and references therein.CrossRefGoogle Scholar
Fabre, E. et al. 1977 Plasma Physics and Controlled Nuclear Fusion Research 1976(Proceedings of the 6th International Conference,Berchtesgaden), Vol. 2, I.A.E.A., Vienna, 597.Google Scholar
Forslund, D. W., Kindel, J. M. & Lindman, E. 1975 Phys. Fluids 18, 1002.CrossRefGoogle Scholar
Gellert, B. & Kronast, B. 1984 Appl. Phys. B33, 29.CrossRefGoogle Scholar
Giles, R., Fedosejevs, R. & Offenberger, A. A. 1982 Phys. Rev. A26, 1113.CrossRefGoogle Scholar
Giles, R. & Offenberger, A. A. 1982 Appl. Phys. Lett. 40, 944.CrossRefGoogle Scholar
Giles, R. & Offenberger, A. A. 1983 Phys. Rev. Lett. 50, 421.CrossRefGoogle Scholar
Giles, R. & Offenberger, A. A. 1983a Proceedings 13th Annual Anomalous Absorption Conference,Banff, Alberta,June 1983, Laser/Plasma Research Laboratory, University of Alberta, Edmonton, p. A3.Google Scholar
Goldman, L. M., Soures, J. & Lubin, M. J. 1973 Phys. Rev. Lett. 31, 19.CrossRefGoogle Scholar
Handke, J.Rizvi, S. A. H. & Kronast, B. 1981 Appl. Phys. 25, 109.CrossRefGoogle Scholar
Handke, J.Rizvi, S. A. H. & Kronast, B. 1983 Phys. Rev. Lett. 51, 1660.CrossRefGoogle Scholar
Herbst, M. J., Clayton, C. E. & Chen, F. F. 1979 Phys. Rev. Lett. 43, 1591.CrossRefGoogle Scholar
Karttunen, S. J., McMullin, J. N. & Offenberger, A. A. 1981 Phys. Fluids 24, 447.CrossRefGoogle Scholar
Karttunen, S. J. & Salomaa, R. R. E. 1982 Phys. Lett. 88A, 350.CrossRefGoogle Scholar
Kruer, W. L., Valeo, E. J. & Estabrook, K. G. 1975 Phys. Rev. Lett. 35, 1076.CrossRefGoogle Scholar
Kruer, W. L. 1980 Phys. Fluids 23, 1273.CrossRefGoogle Scholar
Lashmore-Davies, C. N. 1975 Plasma Physics, 17, 281.CrossRefGoogle Scholar
Manheimer, W. N. & Colombant, D. G. 1981 Phys. Fludis 24, 447.Google Scholar
Massey, R., Berggren, K. & Pietrzyk, Z. A. 1976. Phys. Rev. Lett. 36, 963.CrossRefGoogle Scholar
Mayer, F. J. et al. 1980 Phys. Rev. Lett. 44, 1498.CrossRefGoogle Scholar
Nishikawa, K. 1968 J. Phys. Soc. Jap. 24, 916, 1152.CrossRefGoogle Scholar
Ng, A. et al. 1979 Phys. Rev. Lett. 42, 307.CrossRefGoogle Scholar
Ng, A., Offenberger, A. A. & Karttunen, S. J. 1981 Opt. Commun. 36, 200.CrossRefGoogle Scholar
Offenberger, A. A. et al. 1976 J. Appl. Phys. 47, 1451.CrossRefGoogle Scholar
Offenberger, A. A., Ng, A. & Cervenan, M. R. 1978 Can. J. Phys. 56, 381.CrossRefGoogle Scholar
Offenberger, A. A. & Ng, A. 1980 Phys. Rev. Lett. 45, 1189.CrossRefGoogle Scholar
Pesme, D., Laval, E. & Pellat, R. 1973 Phys. Rev. Lett. 31, 203.CrossRefGoogle Scholar
Phillion, D. W., Kruer, W. L. & Rupert, V. C. 1977 Phys. Rev. Lett. 39, 1529.CrossRefGoogle Scholar
Ripin, B. H. et al. 1974 Phys. Rev. Lett. 33, 634.CrossRefGoogle Scholar
Ripin, B. H. et al. 1977 Phys. Rev. Lett. 39, 611.CrossRefGoogle Scholar
Rosenbluth, M. N. 1972 Phys. Rev. Lett. 29, 565.CrossRefGoogle Scholar
Rosenbluth, M. N., White, R. B. & Liu, C. S. 1973 Phys. Rev. Lett. 31, 1190.CrossRefGoogle Scholar
Tang, C. L. 1966 J. Appl. Phys. 37, 2945.CrossRefGoogle Scholar
Tsytovich, V. N. 1970 Nonlinear Effects in Plasma, Plenum Press, New York, N. Y.CrossRefGoogle Scholar
Turechek, J. J. & Chen, F. F. 1976 Phys. Rev. Lett. 36, 720.CrossRefGoogle Scholar
Walsh, C. J. & Baldis, H. A. 1982. Phys. Rev. Lett. 48, 1483.CrossRefGoogle Scholar
Yamanaka, C. et al. 1974 Phys. Rev. Lett. 32, 1038.CrossRefGoogle Scholar