Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T13:00:21.177Z Has data issue: false hasContentIssue false

Devitrification kinetics and mechanism of Pyrex borosilicate glass

Published online by Cambridge University Press:  31 January 2011

Jau-Ho Jean
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Yu-Ching Fang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Get access

Abstract

Cristobalite is formed when initially amorphous Pyrex borosilicate glass (Corning 7740) is fired at temperatures ranging from 700 to 1000 °C. The sigmoidal devitrification kinetics of cristobalite obeys Avrami-like three-dimensional diffusion-controlled kinetics. Activation energy analysis indicates that the diffusion of Na+ in the glass is the rate-limiting step during phase transformation. The above conclusion is further confirmed by calculated and measured results of linear growth rates.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jean, J.H. and Gupta, T.K., J. Am. Ceram. Soc. 76, 2010 (1993).CrossRefGoogle Scholar
2.Cox, S.M. and Kirby, P.L., Nature 159, 162 (1947).CrossRefGoogle Scholar
3.Jean, J.H. and Gupta, T.K., J. Mater. Res. 8, 1767 (1993).CrossRefGoogle Scholar
4.Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics, 2nd ed. (John Wiley, New York, 1976), p. 87.Google Scholar
5.Jean, J.H. and Gupta, T.K., J. Mater. Res. 7, 3103 (1992).CrossRefGoogle Scholar
6.Jean, J.H. and Gupta, T.K., J. Mater. Res. 8, 2393 (1993).CrossRefGoogle Scholar
7.Jean, J.H. and Gupta, T.K., J. Mater. Res. 10, 1312 (1995).CrossRefGoogle Scholar
8.Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
9.Avrami, M., J. Chem. Phys. 8, 212 (1940).CrossRefGoogle Scholar
10.Avrami, M., J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
11.Ainslie, N.G., Morelock, C.R., and Turnbull, D., in Symposium on Nucleation and Crystallization in Glasses and Melts, (American Ceramic Society, Westerville, OH, 1962), p. 97.Google Scholar
12.Doerner, P., Gauckler, L.J., Krieg, H., Lukas, H.L., Petzow, G., and Weiss, J., CALPHAD: Comput. Coupling Phase Diagrams Ther-mochem. 3, 241 (1979).CrossRefGoogle Scholar
13.James, P.F., in Glasses and Glass-Ceramics, edited by Lewis, M.H. (Chapman and Hall, New York, 1989), p. 59.CrossRefGoogle Scholar
14.Varshneya, A.K. and Cooper, A.R., J. Am. Ceram. Soc. 55, 220 (1972).CrossRefGoogle Scholar
15.Negodaev, G.D., Ivanov, I.A., and Evstrop'ev, K.K., Elektrokhimiya 9, 1656 (1973).Google Scholar
16.Varshneya, A.K. and Cooper, A.R., J. Am. Ceram. Soc. 55, 312 (1972).CrossRefGoogle Scholar
17.Engelke, H. and Oel, H.J., Glastechn. Ber. 47, 85 (1974).Google Scholar
18.May, H.B. and Wollast, R., J. Am. Ceram. Soc. 57, 30 (1974).CrossRefGoogle Scholar
19.Chang, C.R. and Jean, J.H., J. Am. Ceram. Soc. 82, 1725 (1999).CrossRefGoogle Scholar
20.Jean, J.H., Fang, Y.C., Dai, S., Huang, R.F., and Wilcox, D., J. Am. Ceram. Soc. (2000, in press).Google Scholar
21.Epse, W., in Materials of High Vacuum Technology (Pergamon Press, Oxford, U.K., 1968), Vol. 2, Chap. 10.Google Scholar