Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T19:07:16.616Z Has data issue: false hasContentIssue false

Sol-gel Processing and Characterization of Alkaline Earth and Rare-earth Fluoride Thin Films

Published online by Cambridge University Press:  31 January 2011

Munehiro Tada
Affiliation:
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3–14–1, Hiyoshi, Kohoku-ku, Yokohama 223–8522, Japan
Shinobu Fujihara*
Affiliation:
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3–14–1, Hiyoshi, Kohoku-ku, Yokohama 223–8522, Japan
Toshio Kimura
Affiliation:
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3–14–1, Hiyoshi, Kohoku-ku, Yokohama 223–8522, Japan
*
a)Address all correspondence to this author.
Get access

Abstract

Alkaline earth and rare-earth fluoride thin films were prepared on silica glass substrates by a sol-gel process using trifluoroacetic acid (TFA) as a fluorine source. Homogeneous solutions were obtained by stirring a mixture of alkaline earth or rare-earth metal acetates, TFA and H2O, dissolved in isopropanol. The solutions were spin-coated and heated at 300–800 °C. The fluoride thin films were obtained by heat treatment around 400 °C in air. The crystallization behavior, the surface morphology, and the optical properties of the films depended on the heating temperature as well as the chemical species of the metal ions.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pulker, H. K., Appl. Opt. 18, 19691977 (1979).CrossRefGoogle Scholar
2.Bausá, L.E., Lifante, G., Daran, E., and Pernas, P.L., Appl. Phys. Lett. 68, 32423244 (1996).CrossRefGoogle Scholar
3.Buchal, Ch., Siegrist, Th., Jacobson, D. C., and Poate, J. M., Appl. Phys. Lett. 68, 438440 (1996).CrossRefGoogle Scholar
4.Uda, S., Adachi, K., Inaba, K., Yao, T., Kasuya, A., and Fukuda, T., Jpn. J. Appl. Phys. 36, L41–L44 (1997).CrossRefGoogle Scholar
5.Ballato, J., Riman, R. E., and Snitzer, E., J. Non-Cryst. Solids 213&214, 126136 (1997).CrossRefGoogle Scholar
6.Joosten, P. H., Heller, P., Nabben, H. J. P., van Hal, H. A. M., Popma, T. J. A., and Haisma, J., Appl. Opt. 24, 26742678 (1985).CrossRefGoogle Scholar
7.Thomas, I. M., Appl. Opt. 27, 33563358 (1988).CrossRefGoogle Scholar
8.Nakano, N. and Saito, S., Japan Patent 02 26,824, 1990, Chem. Abstr. 113: 10041le.Google Scholar
9.Rywak, A. A. and Burlitch, J. M., Chem. Mater. 8, 6067 (1996).CrossRefGoogle Scholar
10.Fujihara, S., Tada, M., and Kimura, T., Thin Solid Films 304, 252255 (1997).CrossRefGoogle Scholar
11.Uhlmann, D. R., Boulton, J. M., and Teowee, G., J. Non-Cryst. Solids 196, 2636 (1996).CrossRefGoogle Scholar
12.Ballato, J., Dejneka, M., Riman, R. E., Snitzer, E., and Zhou, W., J. Mater. Res. 11, 841849 (1996).CrossRefGoogle Scholar
13.Dejneka, M., Snitzer, E., and Riman, R.E., J. Non-Cryst. Solids 202, 2334 (1996).CrossRefGoogle Scholar
14.Fujihara, S., Tada, M., and Kimura, T., J. Ceram. Soc. Jpn. 106, 124126 (1998).CrossRefGoogle Scholar
15.Rillings, K. W. and Roberts, J. E., Thermochim. Acta 10, 285298 (1974).CrossRefGoogle Scholar
16.German, R. M., Sintering Theory and Practice (John Wiley & Sons, Inc., New York, 1996), pp. 7895.Google Scholar
17.Brinker, C. J. and Scherer, G. W., Sol-Gel Science (Academic Press, Inc., New York, 1990), pp. 802803.Google Scholar