Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T11:48:33.676Z Has data issue: false hasContentIssue false

Processing of highly oriented lithium niobate films through chemical solution deposition

Published online by Cambridge University Press:  31 January 2011

Satomi Ono
Affiliation:
Nagoya Municipal Industrial Research Institute, Rokuban, Atsuta, Nagoya, 456-0058, Japan
Shin-Ichi Hirano
Affiliation:
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
Get access

Abstract

A precursor solution for processing lithium niobate (LiNbO3) films was prepared from lithium niobium ethoxides through modification with acetic acid in hydrolysis. Homogeneous gel films were spin-coated on various substrates. Highly oriented LiNbO3 films were crystallized on sapphire and Pt-coated substrates by heat treatment at 500 °C. Crystallization behavior of the LiNbO3 films depended on the orientation of platinum under-layer films. LiNbO3 films crystallized with preferred (001) orientation on Pt(111) layers, while LiNbO3 films crystallized with preferred (113) orientation on Pt(100) layers. LiNbO3 films prepared on Si(111), SiO2, and MgO(100) substrates showed polycrystalline characteristics with less orientation by heat treatment at 500 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shimizu, M., Furushima, Y., Nishida, T., and Shiosaki, T., Jpn. J. Appl. Phys. 32, 4111 (1993).CrossRefGoogle Scholar
2.Lee, S-H., Noh, T.W., and Lee, J-H., Appl. Phys. Lett. 68, 472 (1996).CrossRefGoogle Scholar
3.Marsh, A.M., Harkness, S.D., Qian, F., and Singh, R.K., Appl. Phys. Lett. 62, 952 (1993).CrossRefGoogle Scholar
4.4. Ogale, S.B., Nawathey-Dikshit, R., Dikshit, S.J., and Kanetkar, S.M., J. Appl. Phys. 71, 5718 (1992).CrossRefGoogle Scholar
5.Wernberg, A.A., Gysling, H.J., Filo, A.J., and Blaton, T.N., Appl. Phys. Lett. 62, 946 (1993).CrossRefGoogle Scholar
6.Yamada, A., Tamada, H., and Saitoh, M., J. Appl. Phys. 76, 1776 (1994).CrossRefGoogle Scholar
7.Kondo, Y., Kouyama, T., Ohno, K., Tsuji, M., Nakamura, M., and Fujii, Y., Jpn. J. Appl. Phys. 33, L338 (1994).CrossRefGoogle Scholar
8.Tamada, H., Yamada, A., and Saitoh, M., J. Appl. Phys. 70, 2536 (1991).CrossRefGoogle Scholar
9.Yoon, J-G. and Kim, K., Appl. Phys. Lett. 68, 2523 (1996).CrossRefGoogle Scholar
10.Nashimoto, K., Moriyama, H., and Osakabe, E., Jpn. J. Appl. Phys. 35, 4936 (1996).CrossRefGoogle Scholar
11.Nashimoto, K., Cima, M.J., McIntyre, P.C., and Rhine, W.E., J. Mater. Res. 10, 2564 (1995).CrossRefGoogle Scholar
12.Hagberg, D.S. and Payne, D., in Ferroelectric Thin Films, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 19.Google Scholar
13.Clem, P.G. and Payne, D.A., in Ferroelectric Thin Films IV, edited by Desu, S.B., Tuttle, B.A., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 179.Google Scholar
14.Clem, P.G., Zu, Z., and Payne, D.A., in Epitaxial Oxide Thin Films II, edited by Speck, J.S., Fork, D.K., Wolf, R.M., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 401, Pittsburgh, PA, 1996), p. 249.Google Scholar
15.Derouin, T.A., Lakeman, C.D.E., Wu, X.H., Speck, J.S., and Lange, F.F., J. Mater. Res. 12, 1391 (1997).CrossRefGoogle Scholar
16.Terabe, K., Gruverman, A., Matsui, Y., Iyi, N., and Kitamura, K., J. Mater. Res. 11, 3152 (1996).CrossRefGoogle Scholar
17.Hirano, S., Kikuta, K., and Kato, K., in Ferroelectric Thin Films, edited by Myers, E.R. and Kingon, A.I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 3.Google Scholar
18.Hirano, S., Hayashi, T., Nosaki, K., and Kato, K., J. Am. Ceram. Soc. 72, 707 (1989).CrossRefGoogle Scholar
19.Hirano, S. and Kato, K., Solid State Ionics 32/33, 765 (1989).CrossRefGoogle Scholar
20.Hirano, S. and Kato, K., J. Non-Cryst. Solids 100, 538 (1988).CrossRefGoogle Scholar
21.Hirano, S. and Kato, K., Adv. Ceram. Mater. 3, 503 (1988).CrossRefGoogle Scholar
22.Hirano, S., Yogo, T., Kikuta, K., Isobe, Y., and Ono, S., J. Mater. Sci. 28, 4188 (1993).CrossRefGoogle Scholar
23.Ono, S., Takeo, T., and Hirano, S., J. Am. Ceram. Soc. 79, 1343 (1996).CrossRefGoogle Scholar
24.Kikuta, K., Isobe, Y., Yogo, T., Ono, S., and Hirano, S., J. Am. Ceram. Soc. 79, 2289 (1996).CrossRefGoogle Scholar
25.Ono, S. and Hirano, S., J. Am. Ceram. Soc. 80, 2533 (1997).CrossRefGoogle Scholar
26.Ono, S. and Hirano, S., J. Am. Ceram. Soc. 80, 2869 (1997).CrossRefGoogle Scholar
27.Ono, S., Böse, O., Unger, W., Takeichi, Y., and Hirano, S., J. Am. Ceram. Soc. 81, 1749 (1998).CrossRefGoogle Scholar
28.Doeuff, S., Henry, M., Sanchez, C., and Livage, J., J. Non-Cryst. Solids 89, 206 (1987).CrossRefGoogle Scholar
29.Hung, L.S., Agostinelli, J.A., Mir, J.M., and Zheng, L.R., Appl. Phys. Lett. 62, 3071 (1993).CrossRefGoogle Scholar