Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T15:58:51.006Z Has data issue: false hasContentIssue false

Growth defects in GaN films on sapphire: The probable origin of threading dislocations

Published online by Cambridge University Press:  31 January 2011

X. J. Ning
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
F. R. Chien
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
P. Pirouz
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
J. W. Yang
Affiliation:
APA Optics, Inc., Blaine, Minnesota 55434
M. Asif Khan
Affiliation:
APA Optics, Inc., Blaine, Minnesota 55434
Get access

Abstract

Single crystal GaN films with a wurtzite structure were grown on the basal plane of sapphire. A high density of threading dislocations parallel to the c-axis crossed the film from the interface to the film surface. They were found to have a predominantly edge character with a Burgers vector. In addition, dislocation hal-loops, elongated along the c-axis of GaN, were also found on the prism planes. These dislocations had a mostly screw character with a [0001] Burgers vector. Substrate surface steps with a height of were found to be accommodated by localized elastic bending of GaN (0001)GaN planes in the vicinity of the film/substrate interface. Observations show that the region of the film, with a thickness of ∼100 nm, adjacent to the interface is highly defective. This region is thought to correspond to the low-temperature GaN “buffer” layer which is initially grown on the sapphire substrate. Based on the experimental observations, a model for the formation of the majority threading dislocations in the film is proposed. The analysis of the results leads us to conclude that the film is under residual biaxial compression.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sasaki, T. and Zembutsu, S., J. Appl. Phys. 61, 2533 (1987).CrossRefGoogle Scholar
2.Paisley, M. J., Sitar, Z., Posthill, J.B., and Davis, R. F., J. Vac. Sci. Technol. 7, 701 (1989).CrossRefGoogle Scholar
3.Sitar, Z., Paisley, M. J., Yan, B., and Davis, R. F., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), pp. 537541.Google Scholar
4.Strite, S. and Morkoç, H., J. Vac. Sci. Technol. B 10, 12371266 (1992).CrossRefGoogle Scholar
5.Davis, R. F., Proc. IEEE 79, 702712 (1991).CrossRefGoogle Scholar
6.Humphreys, T. P., Sukow, C. A., Nemanich, R. J., Posthill, J.B., Rudder, R. A., Hattangady, S. V., and Markunas, R. J., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), pp. 531536.Google Scholar
7.Kuwano, K., Shiraishi, T., Koga, A., Oki, K., Hiramatsu, K., Amano, H., Itoh, K., and Akasaki, I., J. Cryst. Growth 115, 381387 (1991).CrossRefGoogle Scholar
8.Ponce, F. A., Major, J.S. Jr., Plano, W. E., and Welch, D. F., Appl. Phys. Lett. 65, 2302 (1994).CrossRefGoogle Scholar
9.Basu, S. N., Lei, T., and Moustakas, T. D., J. Mater. Res. 9, 23702378 (1994).CrossRefGoogle Scholar
10.Qian, W., Skowronski, M., De Graaf, M., Doverspike, K., Rowland, L. B., and Gaskill, D. K., Appl. Phys. Lett. 66, 1252 (1995).CrossRefGoogle Scholar
11.Cherns, D. and Preston, A. R., in Proc. XIth Int. Congr. on Electron Microscopy, Kyoto, p. 721 (1986).Google Scholar
12.Wang, J., Steeds, J. W., and Woolf, D. A., Philos. Mag. A 65, 829839 (1992).CrossRefGoogle Scholar
13.Ning, X. J. and Pirouz, P., in Defect-Interface Interactions, edited by Kvam, E.P., King, A.H., Mills, M.J., Sands, T.D., and Vitek, V. (Mater. Res. Soc. Symp. Proc. 319, Pittsburgh, PA, 1994), pp. 441456.Google Scholar
14.Ning, X. J. and Pirouz, P., J. Mater. Res. 11 (4) (1996, in press).Google Scholar
15.Chou, C. T., Preston, A. R., and Steeds, J.W., Philos. Mag. A 65, 863888 (1992).CrossRefGoogle Scholar
16.Asif Khan, M., Kuznia, J.N., Van Hove, J. M., Olson, D. T., Krishnankutty, S., and Kolbas, R. M., Appl. Phys. Lett. 58, 526 (1991).CrossRefGoogle Scholar
17.Marukawa, K., Philos. Mag. A 40, 303 (1979).CrossRefGoogle Scholar
18.Chetverikova, I. F., Chukichev, M. V., and Rastorguev, L. N., Inorg. Mater. 22, 5356 (1986).Google Scholar
19.Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (John Wiley & Sons, New York, 1982).Google Scholar
20.Maruska, H. P. and Tietjien, J.J., Appl. Phys. Lett. 15, 327 (1969).CrossRefGoogle Scholar
21.Ikuhara, Y., Pirouz, P., Heuer, A. H., Yadavalli, S., and Flynn, C. P., Philos. Mag. A 70, 7597 (1994).CrossRefGoogle Scholar
22.Matthews, J. W., J. Vac. Sci. Technol. 12, 126 (1975).CrossRefGoogle Scholar
23.Hiramatsu, K., Detchprohm, T., and Akasaki, I., Jpn. J. Appl. Phys. 32, 15281533 (1993).CrossRefGoogle Scholar
24.Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K., and Sawaki, N., J. Cryst. Growth 98, 209 (1989).CrossRefGoogle Scholar
25.Pirouz, P. and Yang, J. W., Ultramicroscopy 51, 189214 (1993).CrossRefGoogle Scholar
26.Lagerlöf, K. P. D., Ph.D. Thesis, Case Western Reserve University (1984).Google Scholar