Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T14:03:15.788Z Has data issue: false hasContentIssue false

Fabrication of Al2O3/BN Nanocomposites by Chemical Processing and Their Mechanical Properties

Published online by Cambridge University Press:  03 March 2011

Takafumi Kusunose*
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
Yoon-Ho Kim
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
Tohru Sekino
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
Takuya Matsumoto
Affiliation:
Division of Biomaterials Science, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
Norihito Tanaka
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
Tadachika Nakayama
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
Koichi Niihara
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Al2O3/BN nanocomposites were fabricated through a novel chemical route involving hot-pressing of α–Al2O3 powders covered partly with turbostratic BN (t-BN). The nano-sized hexagonal BN (h-BN) particles were found to be homogeneously dispersed within the Al2O3 grains as well as at grain boundaries, which is indicative of nanocomposite structures. Thus, the present nanocomposites exhibited the unique properties of high strength and low Young’s modulus associated with nanocomposites. This paper discusses in detail the synthesis process and microstructural features of these materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nagabhooshanam, M. and Dumke, V.R.: Chemiomechanical effects on crack propagation: polycrystalline α-Al2O3. J. Mater. Sci. 27, 2377 (1992).CrossRefGoogle Scholar
2Aza, A.H.D., Chevalier, J., Fantozzi, G., Schehl, M. and Torrecillas, R.: Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 23, 937 (2002).CrossRefGoogle ScholarPubMed
3Hayashi, K., Inadome, T., Tsumura, H., Mashima, T. and Sugioka, Y.: Bone-implant interface mechanics of in vivo bio-inert ceramics. Biomaterials 14, 1173 (1993).CrossRefGoogle ScholarPubMed
4Zhang, G.J., Yang, J.F., Ando, M., Ohji, T. and Kanzaki, S.: Mullite-boron nitride composite with high strength and low elasticity. J. Am. Ceram. Soc. 87, 296 (2004).CrossRefGoogle Scholar
5Zhang, G.J., Beppu, Y., Ohji, T. and Kanzaki, S.: Reaction mechanism and microstructure development of strain tolerant in situ SiC-BN composites. Acta Mater. 49, 77 (2001).CrossRefGoogle Scholar
6Wang, X., Qiao, G. and Jin, Z.: Fabrication of machinable silicon carbide-boron nitride ceramic nanocomposites. J. Am. Ceram. Soc. 87, 565 (2004).CrossRefGoogle Scholar
7Lutz, E.H. and Swain, M.V.: Fracture toughness and thermal shock behavior of silicon nitride ceramics. J. Am. Ceram. Soc. 75, 67 (1992).CrossRefGoogle Scholar
8Mazdiyansni, K.S. and Ruh, R.: High/low modulus Si3N4/BN composite for improved electrical and thermal shock behavior. J. Am. Ceram. Soc. 64, 415 (1981).CrossRefGoogle Scholar
9Kusunose, T., Sekino, T., Choa, Y.H. and Niihara, K.: Fabrication and microstructure of silicon nitride/boron nitride nanocomposite. J. Am. Ceram. Soc. 85, 2678 (2002).CrossRefGoogle Scholar
10Kusunose, T., Sekino, T., Kim, B.S., Choa, Y.H., Nomoto, T., Yamamoto, Y. and Niihara, K.: Properties of hot-pressed AlN/BN nanocomposites. Mater. Sci. Forum 439, 131 (2003).CrossRefGoogle Scholar
11Niihara, K.: New design concept of structural ceramics-Nanocomposites. J. Ceram. Soc. Jpn. 99, 974 (1991).CrossRefGoogle Scholar
12Ohji, T., Jeong, Y.K., Choa, Y.H. and Niihara, K.: Strengthening at toughening mechanisms of ceramic nanocomposites. J. Am. Ceram. Soc. 77, 1453 (1998).CrossRefGoogle Scholar
13Sekino, T., Nakajima, T., Ueda, S. and Niihara, K.: Reduction and sintering of a nickel-dispersed-alumina composite and its properties. J. Am. Ceram. Soc. 80, 1139 (1997).CrossRefGoogle Scholar
14Madarasz, J., Beregi, E., Sztatisz, J., Foldvari, I. and Pokol, G.: Combined DTA and XRD study of sintering steps towards YAl3(BO3)4. J. Therm. Anal. Calorim. 64, 1059 (2001).CrossRefGoogle Scholar
15Sinclar, W. and Simmons, H.: Microstructure and thermal shock behavior of BN composites. J. Mater. Sci. Lett. 6, 627 (1987).CrossRefGoogle Scholar
16Zener, C.: quoted by C. S. Smith: Grains, phase, and interfaces: An interpretation of microstructure. Trans. Am. Inst. Min. Metall. Soc. 175, 15 (1948).Google Scholar
17Steans, L.C. and Harmer, M.P.: Particle-inhibited grain growth in Al2O3-SiC:II, equilibrium and kinetic analyses. J. Am. Chem. Soc. 79, 3020 (1996).Google Scholar
18Kingery, D., Bowen, H.K. and Uhlmann, D.R.: Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), pp. 773774.Google Scholar
19Kingery, K.D., Bowen, H.K. and Uhlmann, D.R.: Introduction to Ceramics, 2nd ed. (John Wiley & Sons, Inc., New York, 1976), pp. 783787.Google Scholar