Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T11:58:26.907Z Has data issue: false hasContentIssue false

Fabrication, characterization, and photoluminescence properties of highly ordered TiO2 nanowire arrays

Published online by Cambridge University Press:  31 January 2011

Y. Lei
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031, People's Republic of China
L. D. Zhang
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031, People's Republic of China
Get access

Abstract

Highly ordered TiO2 nanowire arrays were prepared in anodic alumina membranes by a sol-gel method. The nanowires are single-crystalline anatase phase with uniform diameters around 50 nm. At room temperature, photoluminescence (PL) measurements of these TiO2 nanowire arrays showed a visible broad band with three peaks, which were located at about 425, 460, and 530 nm that are attributed to self-trapped excitons, F, and F+ centers, respectively. A model is also presented to explain the PL intensity drop-down of the TiO2 nanowire arrays embedded in the alumina membrane: the blue PL band of the anodic alumina membranes arises from the F+ centers on the pore walls, and the TiO2 nanowires first form in the center area of the pores and then extend to the pore walls.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Keller, F., Hunter, M.S., and Robinson, D.L., J. Electrochem. Soc. 100, 411 (1953).CrossRefGoogle Scholar
2.Huber, C.A., Huber, T.E., Sadoqi, M., Lubin, J.A., Manolis, S., and Prater, C.B., Science 263, 800 (1994).CrossRefGoogle Scholar
3.Whitney, T.M., Jiang, J.S., Searson, P.C., and Chien, C.L., Science 261, 1316 (1993).CrossRefGoogle Scholar
4.Hoyer, P., Adv. Mater. 8 (10), 857 (1996).CrossRefGoogle Scholar
5.Li, J., Papadopoulos, C., and Xu, J.M., Appl. Phys. Lett. 75, 367 (1999).CrossRefGoogle Scholar
6.Martin, C.R., Science 266, 1961 (1994).CrossRefGoogle Scholar
7.Masuda, H. and Satoh, M., Jpn. J. Appl. Phys. 35, 126 (1996).CrossRefGoogle Scholar
8.Masuda, H., Hasegwa, F., and Ono, S., J. Electrochem. Soc. 144, L127 (1997).CrossRefGoogle Scholar
9.O’Regan, B. and Gratzel, M., Nature 353, 737 (1991).CrossRefGoogle Scholar
10.De Haart, L.G.J. and Blasse, G., J. Solid State Chem. 61, 135 (1986).CrossRefGoogle Scholar
11.Tang, H., Berger, H., Schmid, P.E., and Levy, F., Solid State Commun. 87, 847 (1993).CrossRefGoogle Scholar
12.Saraf, L.V., Patil, S.I., Ogale, S.B., Sainkar, S.R., and Kshirsager, S.T., Int. J. Mod. Phys. B 12, 2635 (1998).CrossRefGoogle Scholar
13.Serpone, N., Lawless, D., and Khairutdinov, R., J. Phys. Chem. 99, 16646 (1995).CrossRefGoogle Scholar
14.Forss, L. and Schubnell, M., Appl. Phys. B 56, 363 (1993).CrossRefGoogle Scholar
15.Redmond, G., Fitzmaurice, D., and Graetzel, M., J. Phys. Chem. 97, 6951 (1993).CrossRefGoogle Scholar
16.Lu, G., Linsebigler, A., and Yates, J.T., J. Phys. Chem. 98, 11733 (1994).CrossRefGoogle Scholar
17.Lakshmi, B.B., Patrissi, C.J., and Martin, C.R., Chem. Mater. 9, 2544 (1997).CrossRefGoogle Scholar
18.Kröger, F.A., The Chemistry of Imperfect Crystals (North-Holland Publishing Co., Amsterdam, The Netherlands, 1964), pp. 202, 1001.Google Scholar
19.Bersani, D., Lottici, P.P., and Ding, X.Z., Appl. Phys. Lett. 72, 73 (1998).CrossRefGoogle Scholar
20.Furlong, D.N., Wells, D., and Sasse, W.H.F., J. Phys. Chem. 90, 1107 (1986).CrossRefGoogle Scholar
21.Joselevich, E. and Willner, I., J. Phys. Chem. 98, 7628 (1994).CrossRefGoogle Scholar
22.Diggle, J.W., Downie, T.C., and Goulding, C.W., Chem. Rev. 69, 365 (1969).CrossRefGoogle Scholar
23.Du, Y., Cai, W.L., Mo, C.M., Chen, J., Zhang, L.D., and Zhu, X.G., Appl. Phys. Lett. 74, 2951 (1999).CrossRefGoogle Scholar
24.Hench, L.L. and West, J.K., Chem. Rev. 90, 33 (1990).CrossRefGoogle Scholar
25.Livage, J., Henry, M., and Sanchez, C., Prog. Solid State Chem. 18, 259 (1988).CrossRefGoogle Scholar