Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T07:25:58.072Z Has data issue: false hasContentIssue false

Aluminum-containing intergranular phases in hot-pressed silicon carbide

Published online by Cambridge University Press:  03 March 2011

Xiao Feng Zhang*
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Lutgard C. De Jonghe
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Using transmission electron microscopy, we studied aluminum-containing intergranular phases and secondary-phase particles at triple-junctions in SiC (hot-pressed with aluminum, boron, and carbon additions). This study of statistical high-resolution electron microscopy of intergranular films indicated that a large fraction of the vitreous intergranular films (in the as-hot-pressed SiC) crystallized during post-annealing in argon above 1000 °C. However, brief heating to 1900 °C indeed re-melted 25% of the crystallized intergranular films. The structural transitions were reflected in the statistical width distributions of the amorphous grain-boundary layers. At triple-junctions, Al2O3, Al2OC-SiC solid solution, and mullite phases were newly identified. These phases, together with others reported before, are represented in a quaternary phase diagram for 1900 °C. It is proposed that a SiC-Al2OC liquid domain should be included in this phase diagram.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Alliegro, R.A., Coffin, L.B. and Tinklepaugh, J.R.: Pressure-sintered silicon carbide. J. Am. Ceram. Soc. 39, 386 (1956).CrossRefGoogle Scholar
2.Prochazka, S. and Scanlan, R.M.: Effect of boron and carbon on sintering of SiC. J. Am. Ceram. Soc. 58, 72 (1975).CrossRefGoogle Scholar
3.Williams, R.M., Juterbock, B.N., Shinozaki, S.S., Peters, C.R. and Whalen, T.J.: Effects of sintering temperatures on the physical and crystallographic properties of β-SiC. Am. Ceram. Soc. Bull. 64, 1385 (1985).Google Scholar
4.Nagano, T., Kaneko, K., Zhan, G-D. and Mitomo, M.: Effect of atmosphere on weight loss in sintered silicon carbide during heat treatment. J. Am. Ceram. Soc. 83, 2781 (2000).CrossRefGoogle Scholar
5.Hamminger, R., Grathwohl, G. and Thummler, F.: Microanalytical investigation of sintered SiC, II. J. Mater. Sci. 18, 3154 (1983).CrossRefGoogle Scholar
6.Lane, J.E., Carter, C.H. and Davis, R.F.: Kinetics and mechanisms of high temperature creep in silicon carbide: III, Sintered α-silicon carbide. J. Am. Ceram. Soc. 71, 281 (1988).CrossRefGoogle Scholar
7.Lange, F.F.: Hot-pressing behavior of silicon carbide powders with additions of aluminum oxide. J. Mater. Sci. 10, 314 (1975).CrossRefGoogle Scholar
8.Omori, M. and Takei, H.: Pressureless sintering of silicon carbide. J. Am. Ceram. Soc. 65 C (1982).CrossRefGoogle Scholar
9.Tanaka, H., Inomata, Y., Hara, K. and Hasegawa, H.: Normal sintering of Al-doped β-SiC. J. Mater. Sci. Lett. 4, 315 (1985).CrossRefGoogle Scholar
10.Huang, J-L., Hurford, A.C., Cutler, R.A. and Virkar, A.V.: Sintering behavior and properties of SiCAlON ceramics. J. Mater. Sci. Lett. 21, 1448 (1986).Google Scholar
11.Mulla, M.A. and Krstic, V.D.: Low temperature pressureless sintering of β-silicon carbide with aluminum oxide and yttrium oxide additions. Am. Ceram. Bull. 70, 439 (1991).Google Scholar
12.Padture, N.P.: In Situ-toughened silicon carbide. J. Am. Ceram. Soc. 77, 519 (1994).CrossRefGoogle Scholar
13.Tanaka, H. and Zhou, Y.: Low temperature sintering and elongated grain growth of 6H-SiC powder with AlB2 and C additives. J. Mater. Res. 14, 518 (1999).CrossRefGoogle Scholar
14.Lin, B.W., Imai, M., Yano, T. and Iseki, T.: Hot-pressing of β-SiC powder with Al-B-C additives. J. Am. Ceram. Soc. 69 C (1986).CrossRefGoogle Scholar
15.Misra, A.K.: Thermochemical analysis of the silicon carbide-alumina reaction with reference to liquid-phase sintering of silicon carbide. J. Am. Ceram. Soc. 74, 345 (1991).CrossRefGoogle Scholar
16.Zhou, Y., Tanaka, H., Otani, S. and Bando, Y.: Low temperature pressureless sintering of α-SiC with Al4C3-B4C-C additions. J. Am. Ceram. Soc. 82, 1959 (1999).CrossRefGoogle Scholar
17.Cao, J.J., MoberlyChan, W.J., De Jonghe, L.C., Gilbert, C.J. and Ritchie, R.O.: In Situ Toughened silicon carbide with Al-B-C additions. J. Am. Ceram. Soc. 79, 461 (1996).CrossRefGoogle Scholar
18.MoberlyChan, W.J., Cao, J.J. and De Jonghe, L.C.: The role of the amorphous grain boundaries and the β-α transformation in toughening SiC. Acta Mater. 46, 1625 (1998).CrossRefGoogle Scholar
19.Hamminger, R., Grathwohl, G. and Thummler, F.: Microanalytical investigation of sintered SiC, I. J. Mater. Sci. 18, 353 (1983).CrossRefGoogle Scholar
20.Sigl, L. and Kleebe, H-J.: Core/rim structure of liquid-phase-sintered silicon carbide. J. Am. Ceram. Soc. 76, 773 (1993).CrossRefGoogle Scholar
21.MoberlyChan, W.J. and De Jonghe, L.C.: Controlling interface chemistry and structure to process and toughen silicon carbide. Acta Mater. 46, 2471 (1998).CrossRefGoogle Scholar
22.Zhang, X.F., Sixta, M.E. and De Jonghe, L.C.: Grain boundary evolution in hot-pressed ABC-SiC. J. Am. Ceram. Soc. 83, 2813 (2000).CrossRefGoogle Scholar
23.Zhang, X.F., Sixta, M.E. and De Jonghe, L.C.: Secondary phases in hot-pressed ABC-silicon carbide. J. Am. Ceram. Soc. 84, 813 (2001).CrossRefGoogle Scholar
24.Chen, D., Gilbert, C.J., Zhang, X.F. and Ritchie, R.O.: High-temperature cyclic fatigue-crack growth behavior in an in situ toughened silicon carbide. Acta Mater. 48, 659 (2000).CrossRefGoogle Scholar
25.Chen, D., Zhang, X.F. and Ritchie, R.O.: Effects of grain-boundary structure on the strength, toughness and cyclic fatigue properties of monolithic silicon carbide. J. Am. Ceram. Soc. 83, 2079 (2000).CrossRefGoogle Scholar
26.Chen, D., Sixta, M.E., Zhang, X.F., De Jonghe, L.C. and Ritchie, R.O.: Role of the grain-boundary phase on the elevated-temperature strength, toughness, fatigue and creep resistance of silicon carbide sintered with Al, B and C. Acta Mater. 48, 4599 (2000).CrossRefGoogle Scholar
27.Zhang, X.F., Sixta, M.E. and De Jonghe, L.C.: Nano-precipitation in hot-pressed silicon carbide. J. Mater. Sci. 36, 5447 (2001).CrossRefGoogle Scholar
28.Ritchie, R.O., Chen, D. and Zhang, X.F.: Fatigue of ceramics at elevated temperatures: Microstructural design for optimal performance. Int. J. Mater. Prod. Tech. 1, 331 (2001).Google Scholar
29.Zhang, X.F., Sixta, M.E. and De Jonghe, L.C.Diffusion-controlled responses to heat treatment of toughened silicon carbide. Defect and Diffusion Forum 186–187, 45 (2000).Google Scholar
30.Sixta, M.E., Zhang, X.F. and De Jonghe, L.C.: Creep of an In-Situ toughened SiC. J. Am. Ceram. Soc. 84, 2022 (2001).CrossRefGoogle Scholar
31.Zhang, X.F., Lee, G.Y., Chen, D., Ritchie, R.O. and De Jonghe, L.C.: Abrasive wear behavior of heat-treated ABC-silicon carbide. J. Am. Ceram. Soc. 86, 1770 (2003).CrossRefGoogle Scholar
32.Zhang, X.F., Yang, Q., De Jonghe, L.C. and Zhang, Z.: Energy-dispersive spectroscopy analysis of aluminum segregation in silicon carbide grain boundaries. J. Microscopy . 207, 58 (2002).CrossRefGoogle ScholarPubMed
33.De Jonghe, L.C., Ritchie, R.O. and Zhang, X.F. in Nano and Microstructural Design of Advanced Materials, edited by Meyers, M.A., Ritchie, R.O., and Sarikaya, M. (Elsevier, Oxford, U.K., 2003), pp. 145, 156.Google Scholar
34.Cutler, I.B., Miller, P.D., Rafaniello, W., Park, H.K., Thompson, D.P. and Jack, K.H.: New materials in the Si-C-Al-O-N and related systems. Nature 275, 434 (1978).CrossRefGoogle Scholar
35.Babonneau, F., Soraru, G.D., Thorne, K.J. and Mackenzie, J.D.: Chemical characterization of Si-Al-C-O precursor and its pyrolysis. J. Am. Ceram. Soc. 74, 1725 (1991).CrossRefGoogle Scholar
36.Westwood, A.D., Michael, J.R. and Notis, M.R.: Experimental determination of light-element k-factors using the extrapolation technique: Oxygen segregation in aluminum nitride. J. Microscopy. 167, 287 (1992).CrossRefGoogle Scholar
37.Yokokawa, H., Dokiya, M., Fujishige, M., Kamayama, T., Ujiie, S. and Fukuda, K.: X-ray powder diffraction data for two hexagonal aluminum monoxycarbide phases. J. Am. Ceram. Soc. 65 C (1982).CrossRefGoogle Scholar
38.Kriven, W.M. and Pask, J.A.: Solid solution range and microstructures of melt-grown mullite. J. Am. Ceram. Soc. 66, 649 (1983).CrossRefGoogle Scholar
39.Cameron, W.E.: Mullite: A substituted alumina. Am. Mineral. 62, 747 (1977).Google Scholar
40.Nakajima, Y. and Ribbe, P.H.: Twinning and superstructure of Al-rich mullite. Am. Mineral. 66, 142 (1981).Google Scholar
41.Foster, L.M., Long, G. and Hunter, M.S.: Reactions between aluminum oxide and carbon: The Al2O3-Al4C3 phase diagram. J. Am. Ceram. Soc. 39, 1 (1956).CrossRefGoogle Scholar
42.Lihrmann, J.M., Zambetakis, T. and Daire, M.: High-temperature behavior of the aluminum oxycarbide Al2OC in the system Al2O3-Al4C3 and with additions of aluminum nitride. J. Am. Ceram. Soc. 72, 1704 (1989).CrossRefGoogle Scholar
43.Brada, M.P. and Clarke, D.R.: A thermodynamic approach to the wetting and dewetting of grain boundaries. Acta Mater. 45, 2501 (1997).CrossRefGoogle Scholar