Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T09:23:13.988Z Has data issue: false hasContentIssue false

Transonic flow over localised heating elements in boundary layers

Published online by Cambridge University Press:  12 April 2018

A. F. Aljohani
Affiliation:
Department of Mathematics, Faculty of Science, University of Tabuk, Saudi Arabia School of Mathematics, University of Manchester, Manchester M13 9PL, UK
J. S. B. Gajjar*
Affiliation:
School of Mathematics, University of Manchester, Manchester M13 9PL, UK
*
Email address for correspondence: [email protected]

Abstract

The problem of transonic flow past an array of micro-electro-mechanical-type (MEMS-type) heating elements placed on a flat surface is investigated using the triple-deck theory. The compressible Navier–Stokes equations supplemented by the energy equation are considered for large Reynolds numbers. The triple-deck problem is formulated with the aid of the method of matched expansions. The resulting nonlinear viscous lower deck problem, coupled with the upper deck problem governed by the nonlinear Kármán–Guderley equation, is solved using a numerical method based on Chebyshev collocation and finite differences. Our results show the differences in subsonic and supersonic flow behaviour over heated elements. The results indicate the possibility of using the elements to favourably control the transonic flow field.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aljohani, A. F. & Gajjar, J. S. B. 2017a Subsonic flow past localised heating elements in boundary layers. J. Fluid Mech. 821, R2.10.1017/jfm.2017.277Google Scholar
Aljohani, A. F. & Gajjar, J. S. B. 2017b Subsonic flow past three-dimensional localised heating elements in boundary layers. Fluid Dyn. Res. 49, 065503.10.1088/1873-7005/aa8decGoogle Scholar
Aljohani, A. F.2016 Applications of triple deck theory to study the flow over localised heating elements in boundary layers. PhD thesis, University of Manchester.Google Scholar
Bodonyi, R. J. & Smith, F. T. 1986 Shock-wave laminar boundary-layer interaction in supercritical transonic flow. Comput. Fluids 14, 97108.10.1016/0045-7930(86)90002-2Google Scholar
Bodonyi, R. J. & Kluwick, A. 1977 Freely interacting transonic boundary layers. Phys. Fluids 20, 14321437.10.1063/1.862039Google Scholar
Bodonyi, R. J. & Kluwick, A. 1982 Supercritical transonic trailing-edge flow. Q. J. Mech. Appl. Maths 35, 265277.10.1093/qjmam/35.2.265Google Scholar
Brilliant, H. M. & Adamson, T. C. 1974 Shock wave boundary-layer interactions in laminar transonic flow. AIAA J. 12 (3), 322329.10.2514/3.49228Google Scholar
Chengyu, J., Jinjun, D., Binghe, M. & Weizheng, Y. 2012 Advanced flow measurement and active flow control of aircraft with MEMS. Engng Sci. 10, 2632.Google Scholar
Cole, J. D. & Cook, L. P. 1986 Transonic Aerodynamics. Elsevier Science Publishers B.V.Google Scholar
Diesperov, V. N. & Korolev, G. L. 2003 Formation of supersonic zones and local separation zones in transonic steady-state flow past surface roughness in the free interaction regime. Fluid Dyn. 38, 4350.10.1023/A:1023382827566Google Scholar
Gad-el-Hak, M. 2001 The MEMS Handbook. CRC Press.10.1201/9781420050905Google Scholar
Gad-el-Hak, M. 2006 MEMS: Introduction and Fundamentals. CRC Press.Google Scholar
Ho, C. M. & Tai, Y. C. 1996 MEMS and its application for flow control. J. Fluids Engng 118, 437447.10.1115/1.2817778Google Scholar
Korolev, G. L. 1983 Flow in the neighbourhood of the trailing edge of a plate in transonic flow of a viscous gas. Fluid Dyn. 18, 355360.10.1007/BF01090549Google Scholar
Koroteev, M. V. & Lipatov, I. I. 2009 Supersonic boundary layer in regions with small temperature perturbations on the wall. SIAM J. Appl. Maths 70, 11391156.10.1137/080724447Google Scholar
Koroteev, M. V. & Lipatov, I. I.2011 Local temperature perturbations in the boundary layer in regime of free viscous–inviscid interaction. arXiv:1110.2673.10.1017/jfm.2012.312Google Scholar
Koroteev, M. V. & Lipatov, I. I. 2012 Local temperature perturbations of the boundary layer in the regime of free viscous–inviscid interaction. J. Fluid Mech. 707, 595605.10.1017/jfm.2012.312Google Scholar
Koroteev, M. V. & Lipatov, I. I. 2013 Steady subsonic boundary layer in domains of local surface heating. Appl. Math. Mech. 77, 486493.10.1016/j.jappmathmech.2013.12.004Google Scholar
Lipatov, I. I. 2006 Disturbed boundary layer flow with local time-dependent surface heating. Fluid Dyn. 41, 725735.10.1007/s10697-006-0091-2Google Scholar
Lofdahl, L. & Gad-el-Hak, M. 1999 MEMS applications in turbulence and flow control. Prog. Aerosp. Sci. 35, 101203.10.1016/S0376-0421(98)00012-8Google Scholar
Logue, R. P., Gajjar, J. S. B. & Ruban, A. I. 2014 Instability of supersonic compression ramp flow. Phil. Trans. R. Soc. Lond. A 372, 20130342.Google Scholar
Mengaldo, G., Kravtsova, M., Ruban, A. I. & Sherwin, S. J. 2015 Triple-deck and direct numerical simulation analyses of high-speed subsonic flows past a roughness element. J. Fluid Mech. 774, 311323.10.1017/jfm.2015.281Google Scholar
Messiter, A. F., Feo, A. & Melnik, R. E. 1971 Shock-wave strength and separation of a laminar boundary layer at transonic speeds. AIAA J. 9 (6), 11971198.10.2514/3.6337Google Scholar
Murman, E. M. & Cole, J. D. 1971 Calculation of plane steady transonic flows. AIAA J. 9, 114121.10.2514/3.6131Google Scholar
Neiland, V., Bogolepov, V. V., Dudin, G. N. & Lipatov, I. I. 2008 Asymptotic Theory of Supersonic Viscous Gas Flows. Elsevier Science.Google Scholar
Pereira, R. S. & Gajjar, J. S. B. 2010 Transonic inviscid flow past thin airfoils: a new numerical method and global stability analysis using MATLAB. Intl J. Math. Models Meth. Appl. Sci. 4, 7481.Google Scholar
Pereira, R. S. & Gajjar, J. S. B. 2011 Solving fluid dynamics problems with MATLAB. In Engineering Education and Research Using MATLAB (ed. Assi, A.), chap. 12, pp. 289306. InTech.Google Scholar
Perry, B.2008 Predictions of flutter at transonic speeds. PhD thesis, University of Manchester.Google Scholar
Turkyilmaz, I. 2010 Incipient separation over wall irregularities in transonic flow. Appl. Math. Model. 34, 15491558.10.1016/j.apm.2009.09.003Google Scholar