Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T12:01:05.194Z Has data issue: false hasContentIssue false

Direct simulation on nonlinear thermokinetic phenomena due to induced-charge electroosmosis

Published online by Cambridge University Press:  20 September 2018

Hideyuki Sugioka*
Affiliation:
Department of Mechanical Systems EngineeringShinshu University 4-17-1 Wakasato, Nagano 380-8553, Japan
*
Email address for correspondence: [email protected]

Abstract

Previously, we proposed a novel mechanism to produce a nonlinear thermokinetic phenomenon (NTKP) around a metal cylinder in an electrolyte on the basis of analytical discussion. In this study, by using a non-steady direct multi-physics simulation technique based on the Stokes equation coupled with the electroosmotic equation that considers normal diffusion, electrophoresis and thermal diffusion, we directly verify the NTKP and show that the original driving force is the excess ions pressed on the particle by the thermokinetic force and that the NTKP vortex flow around the particle is generated by the interaction between the excess ion and the electric field that is made by the excess ions and/or the Seebeck electric field due to the blocking boundary condition on the wall. Namely, two types of NTKP exist and they are explained in a self-consistent manner by our new theory. In addition, through the discussion of a dielectric particle, we show that the NTKP is a general phenomenon that can be found in both metal and dielectric particles. We believe that our findings provide a new unified viewpoint to understand complex thermokinetic phenomena near metal and dielectric particles.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agar, J. N. 1963 Thermogalvanic cells. In Advances in Electrochemistry and Electrochemical Engineering (ed. Delahay, P. & Tobias, C. W.), vol. 3, chap. 2, pp. 31121. Interscience.Google Scholar
Agar, J. N., Mou, C. Y. & Long Lin, J. 1989 Single-ion heat of transport in electrolyte solutions: a hydrodynamic theory. J. Phys. Chem. 93, 20792082.Google Scholar
Andrade, E. N. da C. 1952 Viscosity of liquids. Proc. R. Soc. Lond. A 215, 3643.Google Scholar
Bazant, M. Z., Kilic, M. S., Storey, B. D. & Ajdari, A. 2009 Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interf. Sci. 152, 4888.Google Scholar
Bazant, M. Z. & Squires, T. M. 2004 Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92 (3), 066101.Google Scholar
Bickel, T., Majee, A. & Würger, A. 2013 Flow pattern in the vicinity of self-propelling hot Janus particles. Phys. Rev. E 88, 012301.Google Scholar
Bonetti, M., Nakamae, S., Roger, M. & Guenoun, P. 2011 Huge Seebeck coefficients in nonaqueous electrolytes. J. Chem. Phys. 134, 114513.Google Scholar
Chikina, I., Shikin, V. & Varlamov, A. A. 2012 Seebeck effect in electrolytes. Phys. Rev. E 86, 011505.Google Scholar
Chikina, I., Shikin, V. B. & Varlamov, A. A. 2015 Effect of boundary conditions on the character of ambipolar diffusion in electrolytes. Phys. Rev. E 92, 012310.Google Scholar
Davidson, S. M., Andersen, M. B. & Mani, A. 2014 Chaotic induced-charge electro-osmosis. Phys. Rev. Lett. 112, 128302.Google Scholar
Duhr, S. & Braun, D. 2006a Geometry of reaction interfaces in chaotic flows. Phys. Rev. Lett. 97, 038103.Google Scholar
Duhr, S. & Braun, D. 2006b Thermophoretic depletion follows Boltzmann distribution. Phys. Rev. Lett. 96, 168301.Google Scholar
Eastman, E. 1926 Thermodynamics of non-isothermal systems. J. Am. Chem. Soc. 48, 14821493.Google Scholar
Eastman, E. 1928 Theory of the soret effect. J. Am. Chem. Soc. 50, 283291.Google Scholar
Eslamian, M. & Saghir, M. Z. 2009 Microscopic study and modeling of thermodiffusion in binary associating mixtures. Phys. Rev. E 80, 061201.Google Scholar
Gangwal, S., Cayre, O. J., Bazant, M. Z. & Velev, O. D. 2008 Induced-charge electrophoresis of metallodielectric particles. Phys. Rev. Lett. 100, 058302.Google Scholar
Giddings, J. 1993 Field-flow fractionation: analysis of macromolecular, colloidal, particulate materials. Science 260, 14561465.Google Scholar
Giddings, J., Shinude, P. & Semenov, S. 1995 Thermophoresis of metal particles in a liquid. J. Colloid Interface Sci. 176, 454458.Google Scholar
Gregersen, M. M., Andersen, M. B., Soni, G., Meinhart, C. & Bruus, H. 2009 Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis. Phys. Rev. E 79, 066316.Google Scholar
Guthrie, G., Wilson, J. N. & Schomaker, V. 1949 Theory of the thermal diffusion of electrolytes in a Clusius column. J. Chem. Phys. 17, 310313.Google Scholar
Hu, R., Cola, B. A., Haram, N., Barisci, J. N., Lee, S., Stoughton, S., Wallace, G., Too, C., Thomas, M., Gestos, A., dela Cruz, M. E., Ferraris, J. P., Zakhidov, A. A. & Baughman, R. H. 2010 Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10 (3), 838846.Google Scholar
Huang, F., Chakraborty, Lundstrom, C. C., Holmden, C., Glessner, J. J. G., Kieffer, S. W. & Lesher, C. E. 2010 Isotope fractionation in silicate melts by thermal diffusion. Nature 464, 396400.Google Scholar
Jiang, H.-R., Yoshinaga, N. & Sano, M. 2010 Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 268302.Google Scholar
JSME 2009 JSME Data Book: Heat Transfer, 5th edn. JSME.Google Scholar
Li, Y. & Gregory, S. 1974 Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 88, 703714.Google Scholar
Majee, A. & Würger, A. 2012 Charging of heated particles using the electrolyte Seebeck effect. Phys. Rev. Lett. 108 (11), 118301.Google Scholar
Pascall, A. J. & Squires, T. M. 2010 Induced charge electro-osmosis over controllably contaminated electrodes. Phys. Rev. Lett. 104, 088301.Google Scholar
Putnam, S. A. & Cahill, D. G. 2005 Transport of nanoscale latex spheres in a temperature gradient. Langmuir 21 (12), 53175323.Google Scholar
Putnam, S. A., Cahill, D. G. & Wong, G. C. L. 2007 Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles. Langmuir 23 (18), 92219228.Google Scholar
Ramos, A., Gonzalez, A., Castellanos, A., Green, N. G. & Morgan, H. 2003 Pumping of liquids with AC voltages applied to asymmetric pairs of microelectrodes. Phys. Rev. E 67, 056302.Google Scholar
Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. 1999 AC electric-field-induced fluid flow in microelectrodes. J. Colloid Interface Sci. 217, 420422.Google Scholar
Squires, T. M. 2009 Induced-charge electro-kinetics: fundamental challenges and opportunities. Lab on a Chip 9, 24772483.Google Scholar
Squires, T. M. & Bazant, M. Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217252.Google Scholar
Sugioka, H. 2010 Chaotic mixer using electro-osmosis at finite Péclet number. Phys. Rev. E 81, 036306.Google Scholar
Sugioka, H. 2011 Basic analysis of induced-charge electrophoresis using the boundary element method. Colloids Surfaces A 376 (1), 102110.Google Scholar
Sugioka, H. 2014a DC step response of induced-charge electro-osmosis between parallel electrodes at lage voltages. Phys. Rev. E 90, 013007.Google Scholar
Sugioka, H. 2014b Nonlinear thermokinetic phenomena due to the Seebeck effect. Langmuir 30, 86218630.Google Scholar
Sugioka, H. 2015a Elastic valve using induced-charge electro-osmosis. Phys. Rev. Appl. 3, 064001.Google Scholar
Sugioka, H. 2015b Strategies on improving the micro-fluidic devices using the nonlinear electro- and thermo-kinetic phenomena. Adv. Colloid Interface Sci. 226 (Part A), 4453.Google Scholar
Sugioka, H. 2016 Direct simulation of phase delay effects on induced-charge electro-osmosis under large AC electric fields. Phys. Rev. E 94, 022609.Google Scholar
Urbanski, J. P., Thorsen, T., Levian, J. A. & Bazant, M. Z. 2006 Fast AC electro-osmotic micropumps with nonplanar electrodes. Appl. Phys. Lett. 89, 143508.Google Scholar
Vigolo, D., Buzzaccaro, S. & Piazza, R. 2010 Thermophoresis and thermoelectricity in surfactant solutions. Langmuir 26 (11), 77927801.Google Scholar
Würger, A. 2007 Thermophoresis in colloidal suspensions driven by Marangoni forces. Phys. Rev. Lett. 98 (13), 138301.Google Scholar
Würger, A. 2008 Transport in charged colloids driven by thermoelectricity. Phys. Rev. Lett. 101, 108302.Google Scholar
Würger, A. 2010 Thermal non-equlibrium transport in colloids. Rep. Prog. Phys. 73, 126601.Google Scholar