Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T07:12:06.811Z Has data issue: false hasContentIssue false

Global linear stability analysis of a flame anchored to a cylinder

Published online by Cambridge University Press:  10 November 2022

Chuhan Wang*
Affiliation:
LadHyX, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France AML, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China
Lutz Lesshafft
Affiliation:
LadHyX, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
Kilian Oberleithner
Affiliation:
Laboratory for Flow Instabilities and Dynamics, Technische Universität Berlin, 10623 Berlin, Germany
*
Email address for correspondence: [email protected]

Abstract

This study investigates the linear stability of a laminar premixed flame, anchored on a square cylinder and confined inside a channel. Many modern linear analysis concepts have been developed and validated around non-reacting bluff-body wake flows, and the objective of this paper is to explore whether those tools can be applied with the same success to the study of reacting flows in similar configurations. It is found that linear instability analysis of steady reacting flow states accurately predicts critical flow parameters for the onset of limit-cycle oscillations, when compared to direct numerical simulation performed with a simple one-step reaction scheme in the low Mach number limit. Furthermore, the linear analysis predicts a strong stabilising effect of flame ignition, consistent with documented experiments and numerical simulations. Instability in ignited wake flows is, however, found to set in at sufficiently high Reynolds number, and a linear wavemaker analysis characterises this instability as being driven by hydrodynamic mechanisms of a similar nature as in non-reacting wake flows. The frequency of nonlinear limit-cycle flame oscillations in this unstable regime is retrieved accurately by linear eigenmode analysis performed on the time-averaged mean flow, under the condition that the full set of the reacting flow equations is linearised. If, on the contrary, unsteadiness in the density and in the reaction rate are excluded from the linear model, then the congruence between linear and nonlinear dynamics is lost.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albayrak, A., Bezgin, D. & Polifke, W. 2018 Response of a swirl flame to inertial waves. Intl J. Spray Combust. Dyn. 10 (4), 277286.CrossRefGoogle Scholar
Albayrak, A., Juniper, M. & Polifke, W. 2019 Propagation speed of inertial waves in cylindrical swirling flows. J. Fluid Mech. 879, 85120.CrossRefGoogle Scholar
Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. & Wells, G. 2015 The FEniCS project version 1.5. Arch. Numer. Softw. 3 (100), 923.Google Scholar
Alnæs, M., Logg, A., Ølgaard, K., Rognes, M. & Wells, G. 2014 Unified Form Language: a domain-specific language for weak formulations of partial differential equations. ACM Trans. Math. Softw. 40 (2), 137.CrossRefGoogle Scholar
Avdonin, A., Meindl, M. & Polifke, W. 2019 Thermoacoustic analysis of a laminar premixed flame using a linearized reactive flow solver. Proc. Combust. Inst. 37 (4), 53075314.CrossRefGoogle Scholar
Balasubramaniyan, M., Kushwaha, A., Guan, Y., Feng, J., Liu, P., Gupta, V. & Li, L.K.B. 2021 Global hydrodynamic instability and blowoff dynamics of a bluff-body stabilized lean-premixed flame. Phys. Fluids 33 (3), 034103.CrossRefGoogle Scholar
Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75 (5), 750756.CrossRefGoogle Scholar
Bengana, Y. & Tuckerman, L. 2021 Frequency prediction from exact or self-consistent mean flows. Phys. Rev. Fluids 6 (6), 063901.CrossRefGoogle Scholar
Bill, R. & Tarabanis, K. 1986 The effect of premixed combustion on the recirculation zone of circular cylinders. Combust. Sci. Technol. 47 (1-2), 3953.CrossRefGoogle Scholar
Blanchard, M., Schmid, P., Sipp, D. & Schuller, T. 2016 Pressure wave generation from perturbed premixed flames. J. Fluid Mech. 797, 231246.CrossRefGoogle Scholar
Blanchard, M., Schuller, T., Sipp, D. & Schmid, P. 2015 Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier–Stokes solver. Phys. Fluids 27 (4), 043602.CrossRefGoogle Scholar
Casel, M., Oberleithner, K., Zhang, F., Zirwes, T., Bockhorn, H., Trimis, D. & Kaiser, T. 2022 Resolvent-based modelling of coherent structures in a turbulent jet flame using a passive flame approach. Combust. Flame 236, 111695.CrossRefGoogle Scholar
CERFACS 2017 CANTERA User's Guide. Available at: https://www.cerfacs.fr/cantera/mechanisms/meth.php.Google Scholar
Chakravarthy, R.V.K., Lesshafft, L. & Huerre, P. 2018 Global stability of buoyant jets and plumes. J. Fluid Mech. 835, 654673.CrossRefGoogle Scholar
Chaudhuri, S., Kostka, S., Renfro, M. & Cetegen, B. 2012 Blowoff mechanism of harmonically forced bluff body stabilized turbulent premixed flames. Combust. Flame 159 (2), 638640.CrossRefGoogle Scholar
Chen, R., Driscoll, J., Kelly, J., Namazian, M. & Schefer, R. 1990 A comparison of bluff-body and swirl-stabilized flames. Combust. Sci. Technol. 71 (4-6), 197217.CrossRefGoogle Scholar
Coenen, W., Lesshafft, L., Garnaud, X. & Sevilla, A. 2017 Global instability of low-density jets. J. Fluid Mech. 820, 187207.CrossRefGoogle Scholar
Courtine, E., Selle, L. & Poinsot, T. 2015 DNS of intrinsic thermoacoustic modes in laminar premixed flames. Combust. Flame 162 (11), 43314341.CrossRefGoogle Scholar
Dally, B., Masri, A., Barlow, R. & Fiechtner, G. 1998 Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames. Combust. Flame 114 (1-2), 119148.CrossRefGoogle Scholar
Davis, R., Moore, E. & Purtell, L. 1984 A numerical-experimental study of confined flow around rectangular cylinders. Phys. Fluids 27 (1), 4659.CrossRefGoogle Scholar
Douglas, C. 2021 Dynamics of swirling jets and flames. PhD thesis, Georgia Institute of Technology.Google Scholar
Emerson, B. & Lieuwen, T. 2015 Dynamics of harmonically excited, reacting bluff body wakes near the global hydrodynamic stability boundary. J. Fluid Mech. 779, 716750.CrossRefGoogle Scholar
Emerson, B., Lieuwen, T. & Juniper, M. 2016 Local stability analysis and eigenvalue sensitivity of reacting bluff-body wakes. J. Fluid Mech. 788, 549575.CrossRefGoogle Scholar
Emerson, B., O'Connor, J., Juniper, M. & Lieuwen, T. 2012 Density ratio effects on reacting bluff-body flow field characteristics. J. Fluid Mech. 706, 219250.CrossRefGoogle Scholar
Emmert, T., Bomberg, S. & Polifke, W. 2015 Intrinsic thermoacoustic instability of premixed flames. Combust. Flame 162 (1), 7585.CrossRefGoogle Scholar
Erickson, R. & Soteriou, M. 2011 The influence of reactant temperature on the dynamics of bluff body stabilized premixed flames. Combust. Flame 158 (12), 24412457.CrossRefGoogle Scholar
Geikie, M.K., Rising, C.J., Morales, A.J. & Ahmed, K.A. 2021 Turbulent flame-vortex dynamics of bluff-body premixed flames. Combust. Flame 223, 2841.CrossRefGoogle Scholar
Ghani, A., Poinsot, T., Gicquel, L. & Staffelbach, G. 2015 LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162 (11), 40754083.CrossRefGoogle Scholar
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.CrossRefGoogle Scholar
Hertzberg, J., Shepherd, I. & Talbot, L. 1991 Vortex shedding behind rod stabilized flames. Combust. Flame 86 (1-2), 111.CrossRefGoogle Scholar
Hill, D. 1995 Adjoint systems and their role in the receptivity problem for boundary layers. J. Fluid Mech. 292, 183204.CrossRefGoogle Scholar
Hoeijmakers, M., Kornilov, V., Arteaga, I., de Goey, P. & Nijmeijer, H. 2014 Intrinsic instability of flame–acoustic coupling. Combust. Flame 161 (11), 28602867.CrossRefGoogle Scholar
Juniper, M. & Pier, B. 2015 The structural sensitivity of open shear flows calculated with a local stability analysis. Eur. J. Mech. (B/Fluids) 49, 426437.CrossRefGoogle Scholar
Kaiser, T., Lesshafft, L. & Oberleithner, K. 2019 a Prediction of the flow response of a turbulent flame to acoustic pertubations based on mean flow resolvent analysis. Trans. ASME: J. Engng Gas Turbines Power 141 (11), 111021.Google Scholar
Kaiser, T., Öztarlik, G., Selle, L. & Poinsot, T. 2019 b Impact of symmetry breaking on the flame transfer function of a laminar premixed flame. Proc. Combust. Inst. 37 (2), 19531960.CrossRefGoogle Scholar
Kedia, K. & Ghoniem, A. 2014 The anchoring mechanism of a bluff-body stabilized laminar premixed flame. Combust. Flame 161 (9), 23272339.CrossRefGoogle Scholar
Kedia, K. & Ghoniem, A. 2015 The blow-off mechanism of a bluff-body stabilized laminar premixed flame. Combust. Flame 162 (4), 13041315.CrossRefGoogle Scholar
Kiel, B., Garwick, K., Gord, J., Miller, J., Lynch, A., Hill, R. & Phillips, S. 2007 A detailed investigation of bluff body stabilized flames. In 45th Aerospace Sciences Meeting and Exhibit, AIAA Paper 2007-168.Google Scholar
Kim, Y., Lee, B. & Im, H. 2019 Hydrodynamic and chemical scaling for blow-off dynamics of lean premixed flames stabilized on a meso-scale bluff-body. Proc. Combust. Inst. 37 (2), 18311841.CrossRefGoogle Scholar
Kumar, R., Adhikari, S., Emerson, B., Fugger, C. & Lieuwen, T. 2022 Blowoff of bluff body flames: transient dynamics and three dimensional effects. Combust. Flame 244, 112245.CrossRefGoogle Scholar
Lesshafft, L. 2018 Artificial eigenmodes in truncated flow domains. Theor. Comput. Fluid Dyn. 32 (3), 245262.Google Scholar
Manoharan, K. & Hemchandra, S. 2015 Absolute/convective instability transition in a backward facing step combustor: fundamental mechanism and influence of density gradient. Trans. ASME: J. Engng Gas Turbines Power 137 (2), 021501.Google Scholar
Mantič-Lugo, V., Arratia, C. & Gallaire, F. 2014 Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett. 113 (8), 084501.CrossRefGoogle ScholarPubMed
Marquet, O. & Lesshafft, L. 2015 Identifying the active flow regions that drive linear and nonlinear instabilities. ArXiv:1508.07620.Google Scholar
Matalon, M. 2007 Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39, 163191.CrossRefGoogle Scholar
McMurtry, P., Jou, W., Riley, J. & Metcalfe, R. 1986 Direct numerical simulations of a reacting mixing layer with chemical heat release. AIAA J. 24 (6), 962970.CrossRefGoogle Scholar
Mehta, P. & Soteriou, M. 2003 Combustion heat release effects on the dynamics of bluff body stabilized premixed reacting flows. In 41st Aerospace Sciences Meeting and Exhibit. AIAA Paper 2003-835.Google Scholar
Meindl, M., Silva, C. & Polifke, W. 2021 On the spurious entropy generation encountered in hybrid linear thermoacoustic models. Combust. Flame 223, 525540.CrossRefGoogle Scholar
Mejia, D., Miguel-Brebion, M., Ghani, A., Kaiser, T., Duchaine, F., Selle, L. & Poinsot, T. 2018 Influence of flame-holder temperature on the acoustic flame transfer functions of a laminar flame. Combust. Flame 188, 512.CrossRefGoogle Scholar
Michaels, D., Shanbhogue, S. & Ghoniem, A. 2017 The impact of reactants composition and temperature on the flow structure in a wake stabilized laminar lean premixed CH4/H2/air flames; mechanism and scaling. Combust. Flame 176, 151161.Google Scholar
Miguel-Brebion, M., Mejia, D., Xavier, P., Duchaine, F., Bédat, B., Selle, L. & Poinsot, T. 2016 Joint experimental and numerical study of the influence of flame holder temperature on the stabilization of a laminar methane flame on a cylinder. Combust. Flame 172, 153161.Google Scholar
Moreno-Boza, D., Coenen, W., Sevilla, A., Carpio, J., Sánchez, A.L. & Liñán, A. 2016 Diffusion-flame flickering as a hydrodynamic global mode. J. Fluid Mech. 798, 9971014.CrossRefGoogle Scholar
Müller, J., Lückoff, F., Kaiser, T., Paschereit, C. & Oberleithner, K. 2022 Modal decomposition and linear modeling of swirl fluctuations in the mixing section of a model combustor based on particle image velocimetry data. Trans. ASME: J. Engng Gas Turbines Power 144 (1), 011021.Google Scholar
Murali, S., Ng, Z. & Sheard, G. 2022 Stability of flow in a channel with repeated flow-facing wedge-shaped protrusions. J. Fluid Mech. 941, A59.CrossRefGoogle Scholar
Nair, S. & Lieuwen, T. 2007 Near-blowoff dynamics of a bluff-body stabilized flame. Trans. ASME: J. Engng Gas Turbines Power 23 (2), 421427.Google Scholar
Nichols, J. & Schmid, P. 2008 The effect of a lifted flame on the stability of round fuel jets. J. Fluid Mech. 609, 275284.CrossRefGoogle Scholar
Noack, B.R. & Eckelmann, H. 1994 A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297330.CrossRefGoogle Scholar
Oberleithner, K., Schimek, S. & Paschereit, C.O. 2015 a Shear flow instabilities in swirl-stabilized combustors and their impact on the amplitude dependent flame response: a linear stability analysis. Combust. Flame 162 (1), 8699.CrossRefGoogle Scholar
Oberleithner, K., Stöhr, M., Im, S., Arndt, C. & Steinberg, A. 2015 b Formation and flame-induced suppression of the precessing vortex core in a swirl combustor: experiments and linear stability analysis. Combust. Flame 162 (8), 31003114.CrossRefGoogle Scholar
Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458, 407417.CrossRefGoogle Scholar
Qadri, U.A., Chandler, G.J. & Juniper, M.P. 2015 Self-sustained hydrodynamic oscillations in lifted jet diffusion flames: origin and control. J. Fluid Mech. 775, 201222.CrossRefGoogle Scholar
Qadri, U., Magri, L., Ihme, M. & Schmid, P. 2021 Using adjoint-based optimization to enhance ignition in non-premixed jets. Proc. R. Soc. A 477 (2245), 20200472.CrossRefGoogle ScholarPubMed
Sato, J. 1982 Effects of Lewis number on extinction behavior of premixed flames in a stagnation flow. Symp. (Intl) Combust. 19 (1), 15411548. Nineteenth Symposium (International) on Combustion.CrossRefGoogle Scholar
Sayadi, T. & Schmid, P. 2021 Frequency response analysis of a (non-)reactive jet in crossflow. J. Fluid Mech. 922, A15.CrossRefGoogle Scholar
Shanbhogue, S., Husain, S. & Lieuwen, T. 2009 a Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog. Energy Combust. Sci. 35 (1), 98120.CrossRefGoogle Scholar
Shanbhogue, S., Shin, D., Hemchandra, S., Plaks, D. & Lieuwen, T. 2009 b Flame-sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing. Proc. Combust. Inst. 32 (2), 17871794.CrossRefGoogle Scholar
Shin, D. & Lieuwen, T. 2013 Flame wrinkle destruction processes in harmonically forced, turbulent premixed flames. J. Fluid Mech. 721, 484513.CrossRefGoogle Scholar
Shin, D., Plaks, D., Lieuwen, T., Mondragon, U., Brown, C. & McDonell, V. 2011 Dynamics of a longitudinally forced, bluff body stabilized flame. J. Propul. Power 27 (1), 105116.CrossRefGoogle Scholar
Skene, C. & Schmid, P. 2019 Adjoint-based parametric sensitivity analysis for swirling M-flames. J. Fluid Mech. 859, 516542.CrossRefGoogle Scholar
Suresha, S., Sujith, R., Emerson, B. & Lieuwen, T. 2016 Nonlinear dynamics and intermittency in a turbulent reacting wake with density ratio as bifurcation parameter. Phys. Rev. E 94 (4), 042206.Google Scholar
Suzuki, H., Inoue, Y., Nishimura, T., Fukutani, K. & Suzuki, K. 1993 Unsteady flow in a channel obstructed by a square rod (crisscross motion of vortex). Intl J. Heat Fluid Flow 14 (1), 29.CrossRefGoogle Scholar
Taira, K., Hemati, M., Brunton, S., Sun, Y., Duraisamy, K., Bagheri, S., Dawson, S. & Yeh, C. 2020 Modal analysis of fluid flows: applications and outlook. AIAA J. 58 (3), 9981022.CrossRefGoogle Scholar
Theofilis, V. 2003 Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39 (4), 249315.CrossRefGoogle Scholar
Turki, S., Abbassi, H. & Nasrallah, S. 2003 Two-dimensional laminar fluid flow and heat transfer in a channel with a built-in heated square cylinder. Intl J. Therm. Sci. 42 (12), 11051113.CrossRefGoogle Scholar
Turton, S., Tuckerman, L. & Barkley, D. 2015 Prediction of frequencies in thermosolutal convection from mean flows. Phys. Rev. E 91 (4), 043009.CrossRefGoogle ScholarPubMed
Vance, F.H., Shoshin, Y., de Goey, L.P.H. & van Oijen, J.A. 2021 An investigation into flashback and blow-off for premixed flames stabilized without a recirculation vortex. Combust. Flame 235, 111690.CrossRefGoogle Scholar
Wang, C., Kaiser, T., Meindl, M., Oberleithner, K., Polifke, W. & Lesshafft, L. 2022 Linear instability of a premixed slot flame: flame transfer function and resolvent analysis. Combust. Flame 240, 112016.CrossRefGoogle Scholar
Williams, G.C., Hottel, H.C. & Scurlock, A.C. 1948 Flame stabilization and propagation in high velocity gas streams. Symp. Combust. Flame Explos. Phenom. 3 (1), 2140.CrossRefGoogle Scholar