Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T05:49:08.600Z Has data issue: false hasContentIssue false

The effects of nanoscale nuclei on cavitation

Published online by Cambridge University Press:  25 January 2021

Zhan Gao
Affiliation:
School of Aerospace Engineering, Tsinghua University, Beijing100084, PR China
Wangxia Wu
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing100081, PR China
Bing Wang*
Affiliation:
School of Aerospace Engineering, Tsinghua University, Beijing100084, PR China
*
Email address for correspondence: [email protected]

Abstract

Under certain conditions, experimental values of the tensile strength of water are found to be much lower than theoretical values, even when the water is purified and degassed as much as possible. The discrepancy could be ascribed to stabilized nanobubbles or nanoparticles suspended in the liquid, as such contaminants cannot be eliminated completely from a substantial liquid volume. Thus, the present study aims at elucidating the effects of such nanoscale nuclei on cavitation. A parameter-free mathematical model is derived to predict the cavitation arising from nanoscale nuclei, based on classical nucleation theory. To verify the model, molecular dynamics is used to simulate cavitation at nuclei of different sizes, embedded either in water or in liquid copper at different temperatures. The cavitation pressures calculated from the molecular dynamics results are compared with the predictions of the present mathematical model, with a good agreement between them. The results show that nanoscale nuclei significantly promote cavitation, i.e. the tensile strength is reduced notably by the presence of nanoscale nuclei. The tensile strength decreases when the size of nuclei increases, and the change rule of cavitation pressure is also affected by the liquid properties, such as liquid temperature. The present study may provide an acceptable explanation of the discrepancy between theory and experiment on the cavitation pressure in liquids purified and degassed as much as possible.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abascal, J.L., Gonzalez, M.A., Aragones, J.L. & Valeriani, C. 2013 Homogeneous bubble nucleation in water at negative pressure: a Voronoi polyhedra analysis. J. Chem. Phys. 138 (8), 084508.CrossRefGoogle Scholar
Abascal, J.L. & Vega, C. 2005 A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123 (23), 234505.CrossRefGoogle ScholarPubMed
Alejandre, J. & Chapela, G.A. 2010 The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions. J. Chem. Phys. 132 (1), 014701.CrossRefGoogle ScholarPubMed
Alheshibri, M., Qian, J., Jehannin, M. & Craig, V.S. 2016 A history of nanobubbles. Langmuir 32 (43), 1108611100.CrossRefGoogle ScholarPubMed
Andersen, A. & Mørch, K.A. 2015 Cavitation nuclei in water exposed to transient pressures. J. Fluid Mech. 771, 424448.CrossRefGoogle Scholar
Arora, M., Ohl, C.D. & Mørch, K.A. 2004 Cavitation inception on microparticles: a self-propelled particle accelerator. Phys. Rev. Lett. 92 (17), 174501.CrossRefGoogle ScholarPubMed
Azouzi, M.M., Ramboz, C., Lenain, J.F. & Caupin, F. 2012 A coherent picture of water at extreme negative pressure. Nat. Phys. 9 (1), 3841.CrossRefGoogle Scholar
Blander, M. & Katz, J.L. 1975 Bubble nucleation in liquids. AIChE J. 21 (5), 833848.CrossRefGoogle Scholar
Borkent, B.M., Arora, M. & Ohl, C.D. 2007 Reproducible cavitation activity in water-particle suspensions. J. Acoust. Soc. Am. 121 (3), 14061412.CrossRefGoogle ScholarPubMed
Borkent, B.M., Arora, M., Ohl, C.D., De Jong, N., Versluis, M., Lohse, D., Mørch, K.A., Klaseboer, E. & Khoo, B.C. 2008 The acceleration of solid particles subjected to cavitation nucleation. J. Fluid Mech. 610, 157182.CrossRefGoogle Scholar
Brennen, C.E. 1995 Cavitation and Bubble Dynamics. Oxford University Press.Google Scholar
Cai, Y., Huang, J.Y., Wu, H.A., Zhu, M.H., Goddard, W.A. & Luo, S.N. 2016 Tensile strength of liquids: equivalence of temporal and spatial scales in cavitation. J. Phys. Chem. Lett. 7 (5), 806–10.CrossRefGoogle ScholarPubMed
Cai, Y., Wu, H.A. & Luo, S.N. 2014 Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids. J. Chem. Phys. 140 (21), 214317.CrossRefGoogle Scholar
Caupin, F., Arvengas, A., Davitt, K., Azouzi Mel, M., Shmulovich, K.I., Ramboz, C., Sessoms, D.A. & Stroock, A.D. 2012 Exploring water and other liquids at negative pressure. J. Phys.: Condens. Matter 24 (28), 284110.Google ScholarPubMed
Caupin, F. & Herbert, E. 2006 Cavitation in water: a review. C. R. Phys. 7 (9-10), 10001017.CrossRefGoogle Scholar
Cho, S.H., Kim, J.Y., Chun, J.H. & Kim, J.D. 2005 Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloid Surf. A 269 (1-3), 2834.CrossRefGoogle Scholar
Coussios, C.C. & Roy, R.A. 2008 Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu. Rev. Fluid Mech. 40, 395420.CrossRefGoogle Scholar
Debenedetti, P.G. 1996 Metastable Liquids: Concepts and Principles. Princeton University Press.Google Scholar
Eastwood, J.W., Hockney, R.W. & Lawrence, D.N. 1980 P3m3dp - the three-dimensional periodic particle-particle particle-mesh program. Comput. Phys. Commun. 19 (2), 215261.CrossRefGoogle Scholar
Farkas, L. 1927 The velocity of nucleus formation in supersaturated vapors. Z. Phys. Chem. 125, 236.Google Scholar
Fu, H., Comer, J., Cai, W. & Chipot, C. 2015 Sonoporation at small and large length scales: effect of cavitation bubble collapse on membranes. J. Phys. Chem. Lett. 6 (3), 413–8.CrossRefGoogle ScholarPubMed
Greenspan, M. & Tschiegg, C.E. 1967 Radiation-induced acoustic cavitation apparatus and some results. J. Res. Natl Bur. Stand. C71 (4), 299.Google Scholar
Harvey, E.N., Barnes, D.K., McElroy, W.D., Whiteley, A.H., Pease, D.C. & Cooper, K.W. 1944 Bubble formation in animals I. Physical factors. J. Cell Comput. Physiol. 24 (1), 122.CrossRefGoogle Scholar
Herbert, E., Balibar, S. & Caupin, F. 2006 Cavitation pressure in water. Phys. Rev. E 74 (4), 041603.Google ScholarPubMed
Jones, S.F., Evans, G.M. & Galvin, K.P. 1999 Bubble nucleation from gas cavities - a review. Adv. Colloid Interface Sci. 80 (1), 2750.CrossRefGoogle Scholar
Li, S. 2015 Tiny bubbles challenge giant turbines: three Gorges puzzle. Interface Focus 5 (5), 25.CrossRefGoogle ScholarPubMed
Li, B., Gu, Y. & Chen, M. 2018 Cavitation inception of water with solid nanoparticles: a molecular dynamics study. Ultrason. Sonochem. 51, 120128.CrossRefGoogle ScholarPubMed
Lohse, D., Schmitz, B. & Versluis, M. 2001 Snapping shrimp make flashing bubbles. Nature 413 (6855), 477478.CrossRefGoogle ScholarPubMed
Man, V.H., Li, M.S., Derreumaux, P. & Nguyen, P.H. 2018 Rayleigh-Plesset equation of the bubble stable cavitation in water: a nonequilibrium all-atom molecular dynamics simulation study. J. Chem. Phys. 148 (9), 094505.CrossRefGoogle Scholar
Martinez, L., Andrade, R., Birgin, E.G. & Martinez, J.M. 2009 Packmol: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30 (13), 21572164.CrossRefGoogle ScholarPubMed
Menzl, G., Gonzalez, M.A., Geiger, P., Caupin, F., Abascal, J.L., Valeriani, C. & Dellago, C. 2016 Molecular mechanism for cavitation in water under tension. Proc. Natl Acad. Sci. USA 113 (48), 1358213587.CrossRefGoogle Scholar
Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F. & Kress, J.D. 2001 Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63 (22), 224106.CrossRefGoogle Scholar
Mørch, K.A. 2018 Cavitation nuclei and tensile strength of water. In International Symposium on Cavitation (ed. J. Katz), p. 1108. American Society of Mechanical Engineers.Google Scholar
Ohl, C.D., Arora, M., Dijkink, R., Janve, V. & Lohse, D. 2006 Surface cleaning from laser-induced cavitation bubbles. Appl. Phys. Lett. 89 (7), 074102.CrossRefGoogle Scholar
Okumura, H. & Itoh, S.G. 2014 Amyloid fibril disruption by ultrasonic cavitation: nonequilibrium molecular dynamics simulations. J. Am. Chem. Soc. 136 (30), 10549–52.CrossRefGoogle ScholarPubMed
Oxtoby, D.W. & Evans, R. 1988 Nonclassical nucleation theory for the gas-liquid transition. J. Chem. Phys. 89 (12), 75217530.CrossRefGoogle Scholar
Plimpton, S. 1995 Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117 (1), 119.CrossRefGoogle Scholar
Shen, V.K. & Debenedetti, P.G. 2003 A kinetic theory of homogeneous bubble nucleation. J. Chem. Phys. 118 (2), 768783.CrossRefGoogle Scholar
Sun, Y.J., Xie, G.Y., Peng, Y.L., Xia, W.C. & Sha, J. 2016 Stability theories of nanobubbles at solid-liquid interface: a review. Colloid Surf. A 495, 176186.CrossRefGoogle Scholar
Vega, C. & de Miguel, E. 2007 Surface tension of the most popular models of water by using the test-area simulation method. J. Chem. Phys. 126 (15), 154707.CrossRefGoogle ScholarPubMed
Volmer, M. & Weber, A. 1926 Nucleus formation in supersaturated systems. Z. Phys. Chem. 119 (3/4), 277301.Google Scholar
Yount, D.E. 1979 Skins of varing permeability: a stabilization mechanism for gas cavitation nuclei. J. Acoust. Soc. Am. 65 (6), 14291439.CrossRefGoogle Scholar
Yount, D.E., Gillary, E.W. & Hoffman, D.C. 1984 A microscopic investigation of bubble formation nuclei. J. Acoust. Soc. Am. 76 (5), 15111521.CrossRefGoogle Scholar
Zeldovich, Y.B. 1943 On the theory of new phase formation: cavitation. Acta Physicochim. URSS 18, 122.Google Scholar
Zhang, L., Belova, V., Wang, H., Dong, W. & Möhwald, H. 2014 Controlled cavitation at nano/microparticle surfaces. Chem. Mater. 26 (7), 22442248.CrossRefGoogle Scholar
Zheng, Q., Durben, D.J., Wolf, G.H. & Angell, C.A. 1991 Liquids at large negative pressures - water at the homogeneous nucleation limit. Science 254 (5033), 829832.CrossRefGoogle ScholarPubMed
Zhou, L., et al. . 2020 Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water. J. Am. Chem. Soc. 142 (12), 55835593.CrossRefGoogle ScholarPubMed