Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:22:34.888Z Has data issue: false hasContentIssue false

On Berman's phenomenon in interpolation theory

Published online by Cambridge University Press:  17 April 2009

W. Lyle Cook
Affiliation:
Department of Mathematics, Eastern Montana College, Billings, Montana, USA
T.M. Mills
Affiliation:
Department of Mathematics, Bendigo Institute of Technology, Bendigo, Victoria.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1965, D.L. Berman established an interesting divergence theorem concerning Hermite-Fejér interpolation on the extended Chebyshev nodes. In this paper it is shown that this phenomenon is not an isolated incident. A similar divergence theorem is proved for a higher order interpolation process. The paper closes with a list of several related open problems.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1975

References

[1]Берман, Д.Л. [Berman, D.L.], “К теории интерполяции” [On the theory of interpolation], Dokl. Akad. Nauk SSSR 163 (1965), 551554; English Transl., Soviet Math. Dokl. 6 (1965), 945–948.Google ScholarPubMed
[2]Берман, Д.Л. [Berman, D.L.], “Исследование интерполяццонного процесса Эрмета-фейера” [A study of the Hermite-Fejér interpolation process], Dokl. Akad. Nauk SSSR 187 (1969), 241244; English Transl., Soviet Math. Dokl. 10 (1969), 813–816.Google Scholar
[3]Fejér, Leopold, “Ueber Interpolation”, Nachr. K. Ges. Wiss. Göttingen Math.-Phys. K1 1916, 6691.Google Scholar
[4]Florica, Olariu, “Asupra ordinului de aproximatie prin polinoame de interpolare de tip Hermite-Fejér cu noduri cvadruple”, An. Univ. Timişoara Ser. Şti. Mat.-Fiz. 3 (1965), 227234.Google Scholar
[5]Krylov, N.K. und Steuermann, E., “Sur quelques formules d'interpolation convergentes pour toute fonction continue”, Bull. Sci. Phys. Math. Acad. Sci. Ukraine 1 (1922), 1316.Google Scholar
[6]Laden, H.N., “An application of the classical orthogonal polynomials to the theory of interpolation”, Duke Math. J. 8 (1941), 591610.Google Scholar
[7]Mills, T.M., “On interpolation polynomials of the Hermite-Fejér type”, submitted.Google Scholar
[8]Rivlin, Theodore J., The Chebyshev polynomials (Interscience [John Wiley and Sons], New York, London, 1974).Google Scholar
[9]Saxena, R.B., “A note on D.L. Berman's theorem on the divergence of Hermite-Fejér interpolation”, Studia Sci. Math. Hungar. 7 (1972), 417421.Google Scholar
[10]Stancu, D.D., “Asupra unei demonstratii a teoremei lui Weierstrass”, Bul. Inst. Politehn. Iaşi (N.S.) 5 (9) (1959), no. 1–2, 4750.Google Scholar
[11]Szabados, J., “On Hermite-Fejér interpolation for the Jacobi abscissas”, Acta Math. Acad. Sci. Hungar. 23 (1972), 449464.CrossRefGoogle Scholar
[12]Szász, Paul, “On quasi-Hermite-Fejér interpolation”, Acta Math. Acad. Sci. Hungar. 10 (1959), 413439.Google Scholar
[13]Vértesi, P.O.H., “On certain linear operators. VI (Lower estimation for the Hermite-Fejér interpolation based on the Jacobi abscissas)”, Acta Math. Acad. Sci. Hungar. 24 (1973), 423427.Google Scholar