Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T11:42:52.498Z Has data issue: false hasContentIssue false

Concentrations of amino acids and urea in the plasma of the ruminating calf and estimation of the amino acid requirements

Published online by Cambridge University Press:  24 July 2007

A. P. Williams
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
R. H. Smith
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A study was made of factors affecting the plasma concentrations of free amino acids (PAA) and urea (PU) in calves receiving approximately equal daily amounts of concentrates (flaked maize and protein supplements) and straw, the former at 10.00 and 17.00 hours, the latter at 17.00 hours only.

2. For calves receiving a diet containing 20 g nitrogen/kg dry matter in which the protein supplement was decorticated, extracted groundnut meal (DCGM) (diet A) there were marked increases in PAA and PU about 1–2 h after a morning feed, then a fall in these values 2 h later to a level which was maintained for the next 3 h. No similar changes occurred after the evening feed. Samples taken 3 h after the morning feed were used in subsequent comparative experiments. There was much more variation between animals than within animals in total PAA, PU and the concentrations of most individual amino acids in these samples.

3. Total PAA and most individual amino acid concentrations were not appreciably affected when the DCGM intake was reduced to give 10 g N/kg dry matter in the diet (diet C), but PU was halved. When maize gluten replaced DCGM as the protein supplement at the higher N intake (diet B) then PU doubled, but again total PAA and most individual amino acid concentrations were little affected. Exceptions were arginine, which was halved, and leucine, which was doubled.

4. Infusions of more than 4·4 g L-methionine/d into the abomasums of calves (110–160 kg live weight) receiving diet A led to a marked increase in plasma methionine concentration. This was considered to correspond with the point at which methionine requirements were met. Using a chromic oxide marker to estimate flows of methionine and cystine from the rumen to the duodenum, it was calculated that under these conditions the methionine requirement was 9·8 g/d, with a cystine flow of 4·9 g/d. Similar calculations showed the corresponding value to be 7·5 g/d with a cystine flow of 2·8 g/d for calves receiving diet C.

5. Infusion of increasing levels of L-lysine into the abomasums of calves (110–160 kg live weight) receiving diet B led to a progressive increase in plasma lysine concentration. There was no consistent change in the rate of increase with increasing amounts infused. Estimated lysine requirement appeared therefore to be less than the flow of lysine from the rumen to the duodenum under these conditions (18·8 g/d).

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Amos, H. E., Little, C. O., Ely, D. G. & Mitchell, G. E. (1971) Can. J. Anim. Sci. 51, 51.CrossRefGoogle Scholar
Benson, J. V., Gordon, M. J. & Patterson, J. A. (1967). Analyt. Biochem. 18, 228.CrossRefGoogle Scholar
Bird, P. R. (1972). Aust. J. biol. Sci. 25, 195.CrossRefGoogle Scholar
Boila, R. J. & Devlin, T. J. (1972). Can. J. Anim. Sci. 52, 681.CrossRefGoogle Scholar
Boling, J. A., Young, A. W. & Bradley, N. W. (1972). J. Nutr. 102, 1247.CrossRefGoogle Scholar
Brookes, I. M., Owens, F. N., Brown, R. E. & Garrigus, U. S. (1973). J. Anim. Sci. 36, 965.CrossRefGoogle Scholar
Burris, W. R., Bradley, N. W. & Boling, J. A. (1973). J. Anim. Sci. 36, 219.Google Scholar
Burroughs, W., Ternus, G. S., Trenkle, A. H., Vetter, R. L. & Cooper, G. C. (1970). J. Anim. Sci. 31, 1037.Google Scholar
Chalupa, W. & Chandler, J. E. (1972). Tracer Studies on Non-protein Nitrogen for Ruminants p. 107. Vienna: International Atomic Energy Agency.Google Scholar
Champredon, C., Pion, R. & Fauconneau, G. (1969). C. r. hebd. Scéanc. Acad. Sci., Paris 269, 2029.Google Scholar
Chandler, P. T. (1970). Proceedings of Virginia Feed Convention and Nutrition Conference p. 22.Google Scholar
Coelho da Silva, J. F., Seeley, R. C., Thomson, D. J., Beever, D. E. & Armstrong, D. G. (1972). Br. J. Nutr. 28, 43.CrossRefGoogle Scholar
Devlin, T. J. (1966). Diss. Abstr. B 27, 942B.Google Scholar
Eggum, B. O. (1970). Br. J. Nutr. 24, 983.CrossRefGoogle Scholar
Fenderson, C. L. & Bergen, W. G. (1972). J. Anim. Sci. 35, 896.CrossRefGoogle Scholar
Ferguson, K. A., Hemsley, J. A. & Reis, P. J. (1967). Aust. J. Sci. 30, 215.Google Scholar
Halfpenny, A. F., Rook, J. A. F. & Smith, G. H. (1969). Br. J. Nutr. 23, 547.CrossRefGoogle Scholar
Harris, L. E. & Phillipson, A. T. (1962). Anim. Prod. 4, 97.Google Scholar
Hogan, J. P., Weston, R. H. & Lindsay, J. R. (1968). Aust. J. biol. Sci. 21, 1263.CrossRefGoogle Scholar
Hutton, K. & Annison, E. F. (1972). Proc. Nutr. Soc. 31, 151.CrossRefGoogle Scholar
Iob, V., McMath, M. & Coon, W. C. (1963). J. surg. Res. 3, 85.CrossRefGoogle Scholar
Kaminski, J., Hatfield, E. E. & Owens, F. N. (1970). J. Anim. Sci. 31, 1042.Google Scholar
Kennedy, P. M. & Siebert, B. D. (1972). Aust. J. agric. lies. 23, 45.CrossRefGoogle Scholar
Leibholz, J. (1965). Aust. J. agric. Res. 16, 973.CrossRefGoogle Scholar
Leibholz, J. (1966). Aust. J. agric. Res. 17, 237.CrossRefGoogle Scholar
Leibholz, J. (1969). J. Anim. Sci. 29, 628.CrossRefGoogle Scholar
Leibholz, J. (1970). Aust. J. agric. Res. 21, 723.CrossRefGoogle Scholar
Leibholz, J. & Moss, F. P. (1967). Aust. J. agric. Res. 18, 157.CrossRefGoogle Scholar
Lewis, A. J. & Speer, V. C. (1973). J. Anim. Sci. 37, 104.CrossRefGoogle Scholar
Lewis, D. (1957). J. agric. Sci., Camb. 48, 438.CrossRefGoogle Scholar
Lewis, D. & Boorman, K. N. (1970). In Proteins as Human Food p. 448 [Lawrie, R. A., editor]. London: Butterworths.CrossRefGoogle Scholar
Linton, J. H., Loughheed, T. C. & Sibbald, I. R. (1968). J. Anim. Sci. 27, 1168.Google Scholar
Mangan, J. L. & Wright, P. C. (1973). Proc. Nutr. Soc. 32, 53A.Google Scholar
Mercer, J. R. & Miller, E. L. (1973). Proc. Nutr. Soc. 32, 87A.Google Scholar
Mitchell, J. R., Becker, D. E., Jensen, A. H., Harmon, B. G. & Norton, H. W. (1968). J. Anim. Sci. 27, 1327.CrossRefGoogle Scholar
Moore, S. (1963). J. biol. Chem. 238, 235.CrossRefGoogle Scholar
Munro, H. N. (1970). In Mammalian Protein Metabolism Vol. 4, p. 299 [Munro, H. N., editor]. New York: Academic Press.CrossRefGoogle Scholar
Nimrick, K., Hatfield, E. E., Kaminski, J. & Owens, F. N. (1970). J. Nutr. 100, 1301.CrossRefGoogle Scholar
Nimrick, K., Owens, F. N., Hatfield, E. E. & Kaminski, J. (1971). J. Dairy Sci. 54, 1496.CrossRefGoogle Scholar
Ogilvie, M. L., Bray, R. W., Hauser, E. R. & Hoekstra, W. G. (1960). J. Anim. Sci. 19, 1281.CrossRefGoogle Scholar
Oltjen, R. R., Kozak, A. S., Putnam, P. A. & Lehman, R. P. (1967). J. Anim. Sci. 26, 1415.CrossRefGoogle Scholar
Porter, J. W. G. & Williams, A. P. (1963). Biochem. J. 87, 7P.Google Scholar
Prior, R. L., Milner, J. A. & Visek, W. J. (1972). J. Nutr. 102, 1223.CrossRefGoogle Scholar
Redd, T. L., Boling, J. A., Bradley, N. W. & Ely, D. G. (1973). J. Anim. Sci. 36, 219.Google Scholar
Reis, P. J. (1967). Aust. J. biol. Sci. 20, 809.CrossRefGoogle Scholar
Reis, P. J. & Schinckel, P. G. (1963). Aust. J. biol. Sci. 16, 218.CrossRefGoogle Scholar
Reis, P. J. & Schinckel, P. G. (1964). Aust. J. biol. Sci. 17, 532.CrossRefGoogle Scholar
Salter, D. N. & Smith, R. H. (1974). Proc. Nutr. Soc. (In the Press.)Google Scholar
Schelling, G. T., Hinds, F. C. & Hatfield, E. E. (1967). J. Nutr. 92, 339.CrossRefGoogle Scholar
Shimbayashi, K. & Yonemura, T. (1972). Jap. J. zootech. Sci. 43, 677.Google Scholar
Sibbald, I. R., Loughheed, T. C. & Linton, J. H. (1968). Proceedings of 2nd World Conference on Animal Production, Urbana p. 453. Washington, DC: American Dairy Science Association.Google Scholar
Slyter, L. L., Oltjen, R. R., Williams, E. E. jr & Wilson, R. L. (1971). J. Nutr. 101, 839.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1970). Br. J. Nutr. 24, 545.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1973). Proc. Nutr. Soc. 32, 84A.Google Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analyt. Chem. 30, 1190.CrossRefGoogle Scholar
Steinacker, G., Devlin, T. J. & Ingalls, J. R. (1970). Can. J. Anim. Sci. 50, 319.CrossRefGoogle Scholar
Stevenson, A. E. & de Langen, H. (1960). N.Z. Jl agric. Res. 3, 314.CrossRefGoogle Scholar
Stevenson, A. E. & Clare, N. T. (1963). N.Z. Jl agric. Res. 6, 121.CrossRefGoogle Scholar
Tao, R. C., Asplund, J. M., Wolfrom, G. W. & Kappel, L. C. (1972). J. Anim. Sci. 35, 1135.Google Scholar
Technicon Instruments Corporation (1967). Technicon Method Sheet N-1c. Tarrytown, New York: Technicon Instruments Corp.Google Scholar
Theurer, B., Woods, W. & Poley, G. E. (1966). J. Anim. Sci. 25, 175.CrossRefGoogle Scholar
Wakeling, A. E., Lewis, D. & Annison, E. F. (1970). Proc. Nutr. Soc. 29, 60A.Google Scholar
Weston, R. H. & Hogan, J. P. (1967). Aust. J. biol. Sci. 20, 967.CrossRefGoogle Scholar
Williams, A. P. & Smith, R. H. (1973). Proc. Nutr. Soc. 32, 51A.Google Scholar
Williams, A. P. & Smith, R. H. (1974 a). Proc. Nutr. Soc. 33, 34A.Google Scholar
Williams, A. P. & Smith, R. H. (1974 b). Proc. Nutr. Soc. 33, 35A.Google Scholar
Young, A. W., Boling, J. A. & Bradley, N. W. (1973). J. Anim. Sci. 36, 803.CrossRefGoogle Scholar
Zimmerman, R. A. & Scott, H. M. (1965). J. Nutr. 87, 13.CrossRefGoogle Scholar