Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T08:49:44.826Z Has data issue: false hasContentIssue false

How was movement controlled before Newton?

Published online by Cambridge University Press:  04 February 2010

Lloyd D. Partridge
Affiliation:
Department of Physiology, University of Tennessee, Memphis, Tenn. 38163

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbs, J. H. (1979) Speech motor equivalence: A need for a multilevel control model. Proceedings 9th International Congress of Phonetics. Copenhagen: Institute of Phonetics, University of Cophenhagen. [JHA]Google Scholar
Abbs, J. H. & Cole, K. J. (in press) Consideration of bulbar and supra-bulbar influences upon speech motor coordination and programming. In: The motor control of speech, ed. Grillner, S., Persson, A., Lindblom, B., & Lubker, J.. New York: Pergamon Press. [JHA]Google Scholar
Abbs, J. H. & Gracco, V. L. (1981) Compensatory responses to low magnitude loads applied to the lower lip during speech. Journal of the Accoustical Society of America 70, Suppl. 1, S78. [JHA]CrossRefGoogle Scholar
Abbs, J. H. & Netsell, R. (1973) A dynamic analysis of two-dimensional muscle force contributions to lower lip movement. Journal of the Acoustical Society of America 53:295. [NHa]Google Scholar
Abrahams, V. C. (1981) Comment: Unresolved questions concerning muscle afferents. Canadian Journal of Physiology and Pharmacology 59:656–60. [AWE]CrossRefGoogle ScholarPubMed
Akazawa, K. & Milner, T. (1981) Modulation of the stretch reflex in human finger muscle. In: Conference on vocal fold physiology, pp. 4661. Madison: Wisconsin. [NHo, taRBS]Google Scholar
Aldridge, J. W. & Stein, R. B. (1980) Nonlinear interactions of stretch reflexes in the decerebrate cat. Society for Neuroscience Abstracts 6:21. [taRBS]Google Scholar
Aldridge, J. W. & Stein, R. B. (1982) Nonlinear properties of the stretch reflex studied in the decerebrate cat. Journal of Neurophysiology 47:179–92. [JAH, JAM, taRBS]CrossRefGoogle ScholarPubMed
Aldridge, J. W., Stein, R. B., Akazawa, K. & Steeves, J. D. (1981) Modulation of stretch reflexes during locomotion in the decerebrate cat. Society for Neuroscience Abstracts 7:560. [JAH, NHa, NHo, taRBS]Google Scholar
Alexander, R. McN. (1977) Terrestrial locomotion. In: Mechanics and energetics of animal locomotion, ed. Alexander, R. McN., & Goldspink, G., pp. 168230. London: Chapman and Hall. [CMP]Google Scholar
Alexander, R. McN. & Vernon, A. (1975) The mechanics of hopping by kangaroos (Macropodidae). Journal of Zoology 177:265303. [RMA]CrossRefGoogle Scholar
Allum, J. H. J. (1975) Responses to load disturbances in human shoulder muscles: The hypothesis that one component is a pulse test information signal. Experimental Brain Research 22:307–26. [JAM]CrossRefGoogle ScholarPubMed
Anderson, P. W. (1972) More is different. Science 177:393–96. [JASK]CrossRefGoogle ScholarPubMed
Appelberg, B., Hulliger, M., Johansson, H. & Sojka, P. (1981) Reflex activation of dynamic fusimotor neurons by natural stimulation of muscle and joint receptor afferent units. In: Muscle receptors and movements, ed. Taylor, A., & Prochazka, A., pp. 149–61. London: Macmillan. [taRBS]CrossRefGoogle Scholar
Appenteng, K., Morimoto, T. & Taylor, A. (1980) Fusimotor activity in masseter nerve of the cat during reflex jaw movements. Journal of Physiology 305:415–31. [taRBS]CrossRefGoogle ScholarPubMed
Arbib, M. A. (1980) Perceptual structures and distributed motor control. COINS Technical Report 79–11. University of Massachusetts, Amherst.Google Scholar
Asratyan, D. G. & Feldman, A. G. (1965) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. 1. Mechanographic analysis of the work of the joint on execution of a postural task. Biphysics 10:925–35. [AGF]Google Scholar
Athans, M. & Falb, P. L. (1966) Optimal control. New York: McGraw-Hill Book Company. [NHo]Google Scholar
Ballantyne, D. & Rathmayer, W. (1981) On the function of the common inhibitory neurone in the walking legs of the crab, Eriphia spinifrons. Journal of Comparative Physiology 143: 111–22. [HC]CrossRefGoogle Scholar
Bárány, M. (1967) ATPase activity of myosin correlated with speed of muscle shortening. Journal of Ceneral Physiology 50:197218. [taRBS]CrossRefGoogle ScholarPubMed
Barnes, W. J. P. (1977) Proprioceptive influence on motor output during walking in the crayfish. Journal of Physiology (Paris) 73:543–64. [HC]Google ScholarPubMed
Barnes, W. J. P., Spirito, C. P. & Evoy, W. H. (1972) Nervous control of walking in the crab, Cardisoma guanhumi. 2. Role of resistance reflexes in walking. Zeitschrift für vergleichende Physiologic 76:1631. [HC]Google Scholar
Bässler, U. (1965) Propriorezeptoren am Subcoxal- und Femur–Tibia-Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahmehmung der Schwerkraftrichtung. Kybernetik 2:168–93. [UB]CrossRefGoogle Scholar
Bässler, U. (1972a) Der ‘Kniesehnenreflex” bei Carausius morosus: Übergangsfunktion und Frequenzgang. Kybernetik 11:3250. [UB]CrossRefGoogle Scholar
Bässler, U. (1972b) Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus: Reaktionen auf passive Bewegungen der Tibia. Kybernetik 12:820. [UB]CrossRefGoogle ScholarPubMed
Bässler, U. (1974) Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus: Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier. Kybernetik 16:213–26. [UB, HC]CrossRefGoogle Scholar
Bässler, U. (1976) Reversal of a reflex to a single motoneuron in the stick insect Carausius morosus. Biological Cybernetics 24:4749. [UB]CrossRefGoogle Scholar
Bässler, U. (1977) Sense organs in the femur of the stick insect and their relevance to the control of position of the femur–tibia joint. Journal of Comparative Physiology 121:99113. [UB]CrossRefGoogle Scholar
Bässler, U. (in press) Neural basis of elementary behavior in stick insects [prov. title]. Heidelberg: Springer Verlag. [UB, HC]Google Scholar
Bässler, U. (in preparation) The neural basis of catalepsy in the stick insect Cuniculina impigra. 3. Characteristics of the extensor motor neurons. [UB]Google Scholar
Bässler, U., Cruse, H. & Pflüger, H. J. (1974) Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus: Untersuchungen zur Stabilität des Systems im inaktiven Tier. Kybernetik 15:117–25. [UB]CrossRefGoogle Scholar
Bässler, U. & Starrer, J. (1980) The neural basis of the femur–tibia control system in the stick insect Carausius morosus. 1. Motoneurons of the extensor tibiae muscle. Biological Cybernetics 38:107–14. [UB]CrossRefGoogle Scholar
Becker, W. & Jurgens, R. (1979) An analysis of the saccadic system by means of double step stimuli. Vision Research 19:967–83. [LS]CrossRefGoogle ScholarPubMed
Bejczy, A. K. (1973) Machine intelligence for autonomous manipulation. In: Remotely manned systems, ed. Heer, E., pp. 377–96. Los Angeles: North Hollywood Press. [LS]Google Scholar
Bekey, G. A. (1962) The human operator as a sampled data system. Institute of Radio Engineers Transactions on Human Factors Electronics 3:43. [LS]CrossRefGoogle Scholar
Belenkii, V. Ye., Gurfinkel, V. S. & Paltsev, Ye. I. (1967) Elements of control of voluntary movements. Biophysics 12:154–61. [GES]Google Scholar
Bellman, R. E. (1961) Adaptive control processes: A guided tour. Princeton, N.J.: Princeton University Press. [JASK]CrossRefGoogle Scholar
Benati, M., Gaglio, S., Morasso, P., Tagliasco, V. & Zaccaria, R. (1980) Anthropomorphic robotics. 2. Analysis of manipulator dynamics and the output motor impedance. Biological Cybernetics 38:141–50. [JASK]CrossRefGoogle Scholar
Beritoff, J. (1925) Über die kontraktionsfähigkeit der skelettmuskeln IV über die physiologische Bedeutung des gefiederten Baues der Muskeln. Pflügers Archiv der Gesamten Physiologic des Menschen und der Tiere 209:763–78. [LDP]CrossRefGoogle Scholar
Bernstein, N. A. (1967) The coordination and regulation of movements. London: Pergamon Press. [JASK, GES]Google Scholar
Bizzi, E. (1980) Central and peripheral mechanisms in motor control. In: Tutorials in motor behavior, ed. Stelmach, G. E., & Requin, J., pp. 131–44. Amsterdam: North-Holland. [AGF]CrossRefGoogle Scholar
Bizzi, E., Dev, P., Morasso, P. & Polit, A. (1978) Effect of load disturbances during centrally initiated movements. Journal of Neurophysiology 41:542–56. [JAM]CrossRefGoogle ScholarPubMed
Bizzi, E., Polit, A. & Morasso, P. (1976) Mechanisms underlying achievement of final head position. Journal of Neurophysiology 39:435–44. [JASK, TV]CrossRefGoogle ScholarPubMed
Blix, M. (1895) Die Länge und Spannung des Muskels. Scandinavisches Archiv für Physiologie 3 (1892):295318; 4 (1893):399409; 5 (1895):150–72, 173206. [LDP]CrossRefGoogle Scholar
Botterman, B. R., Binder, M. D. & Stuart, D. G. (1978) Functional anatomy of the association between motor units and muscle receptors. American Zoologist 18:135–52. [AWE]CrossRefGoogle Scholar
Boylls, C. C. (1975) A theory of cerebellar function with applications to locomotion. 2. The relation of anterior lobe climbing fiber function to locomotor behavior in the cat. COINS Technical Report 76–1, Department of Computer and Information Science, University of Massachusetts. [JASK]Google Scholar
Bridgeman, B., Henry, D. & Stark, L. (1974) Failure to detect displacement of the visual world during saccadic eye movements. Vision Research 15:719–22. [LS]CrossRefGoogle Scholar
Brooks, V. B., ed. (1981) Motor control. The nervous system, vol. 2. In: Handbook of physiology. Bethesda, Md.: American Physiological Society. [LDP]Google Scholar
Burke, R. E. & Edgerton, V. R. (1975) Motor unit properties and selective involvement in movement. Exercise and Sport Science Review 3:3181. [taRBS]CrossRefGoogle ScholarPubMed
Burke, R. E., Rudomin, P. & Zajac, F. E. III. (1976) The effect of activation history on tension production by individual muscle units. Brain Research 109:515–29. [taRBS]CrossRefGoogle ScholarPubMed
Cameron, W. E., Binder, M. D., Botterman, B. R., Retaking, R. M. & Stuart, D. G. (1981) “Sensory partitioning” of cat medial gastrocnemius muscle by its spindles and tendon organs. Journal of Neurophysiology 46:3247. [AWE]CrossRefGoogle ScholarPubMed
Cannon, S. C. & Zahalak, G. I. (1981) Reflex feedback in small perturbations of a limb. ASME, 1981 Biomechanics Symposium, AMD-43: 117–20. [PDN]Google Scholar
Chao, E. Y. & An, K. N. (1978) Determination of internal forces in the human hand. Journal of the Engineering Mechanics Division of the American Society of Civil Engineers 104:255–72. [NHo]CrossRefGoogle Scholar
Cheney, P. D. & Fetz, E. E. (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force. Journal of Neurophysiology 44:773–91. [PNSB]CrossRefGoogle ScholarPubMed
Clark, M. R., Jury, E. I., Krishnan, V. V. & Stark, L. (1975) Computer simulation of biological models using the inners approach. Computer Programs in Biomedics 5:263–82. [LS]Google ScholarPubMed
Clark, M. R., Krishnan, V. V. & Stark, L. (1974) An initial application of inners to bioengineering models. Proceedings of the Institute of Electrical and Electronic Engineers International Symposium on Circuits and Systems, pp. 520–24. [LS]Google Scholar
Clark, M. R., Krishnan, V. V. & Stark, L. (1975) Inners and biocontrol models. Bulletin of Mathematical Biology 37:161. [LS]CrossRefGoogle ScholarPubMed
Clark, M. R. & Stark, L. (1975) Time optimal behavior of human saccadic eye movement. Institute of Electrical and Electronic Engineers Transactions on Automatic Control AC-20: 345–48. [LS]CrossRefGoogle Scholar
Cohen, L. A. (1953) Localization of stretch reflex. Journal of Neurophysiology 16:272–86. [AWE]CrossRefGoogle ScholarPubMed
Cohen, L. A. (1954) Organization of stretch reflex into two types of direct spinal ares. Journal of Neurophysiology 17:443–53. [AWE]CrossRefGoogle Scholar
Cook, G. & Stark, L. (1968) The human eye-movement mechanism: Experiments, modeling and model testing. Archives of Ophthalmology 79:428–36. [LS]CrossRefGoogle ScholarPubMed
Cooke, J. D. (1980) The organization of simple, skilled movements. In: Tutorials in motor behavior, ed. Stelmach, G. E., & Requin, J., pp. 199212. Amsterdam: North-Holland. [AGF]CrossRefGoogle Scholar
Cooke, J. D. (1980) The role of stretch reflexes during active movements. Brain Bcsearch 181:493–97. [JAM]CrossRefGoogle ScholarPubMed
Cooker, H. S., Larson, C. R. & Luschei, E. S. (1980) Evidence that the human jaw stretch reflex increases the resistance of the mandible to small displacements. Journal of Physiology (London) 308:6178. [JAM]CrossRefGoogle ScholarPubMed
Cooper, S. & Eeeles, J. C. (1930) The isometric responses of mammalian muscles. Journal of Physiology 69:377–85. [taRBS]CrossRefGoogle ScholarPubMed
Corda, M., Eklund, G. & v. Euler, C. (1965) External intercostal and phrenic alpha motor responses to changes in the respiratory load. Acta Physiologica Scandinavica 63:391400. [RG]CrossRefGoogle ScholarPubMed
Crago, P. E. (1979) The dependence of muscle tension on stimulus interpulse interval and muscle length. Society for Neuroscience Abstracts 5:1224. [NHo]Google Scholar
Crago, P. E., Honk, J. C. & Hasan, Z. (1976) Regulatory actions of the human stretch reflex. Journal of Neurophysiology 39:925–35. [JAH, JCH]CrossRefGoogle ScholarPubMed
Crowninshield, R. D. (1978) Use of optimization techniques to predict muscle forces. Journal of Biomechanical Engineering 100:8892. [NHo]CrossRefGoogle Scholar
Cruse, H. (1981) Is the position of the femur–tibia joint under feedback control in the walking stick insect? 1. Force measurements. Journal of Experimental Biology 92:8795. [HC]CrossRefGoogle Scholar
Cruse, H. & Braun, U. (in preparation) The control of body height in a walking stick insect, Carausius morosus. [HC]Google Scholar
Cruse, H., Clarae, F., & Chasserat, C. (in preparation) The control of walking movements in the leg of the rock lobster. [HC]Google Scholar
Cruse, H. & Pflüger, H. J. (1981) Is the position of the femur–tibia joint under feedback control in the walking stick insect? 2. Electrophysiological recordings. Journal of Experimental Biology 92:97107. [UB, HC]CrossRefGoogle Scholar
Cruse, H. & Schmitz, J. (in p-eparation) The control system of the femur–tibia joint in the standing leg of a walking stick insect, Carausius morosus. [HC]Google Scholar
Cruse, H. & Storrer, J. (1977) Open loop analysis of a feedback mechanism controlling the leg position in the stick insect Carausius morosus: Comparison between experiment and simulation. Biological Cybernetics 25:143–53. [UB]CrossRefGoogle Scholar
Davis, P. & Melvill Jones, G. (1976) An adaptive neural model compatible with plastic changes induced in the human vestibulo-ocular reflex by prolonged optical reversal of vision. Brain Research 103:546–50. [rRBS]CrossRefGoogle Scholar
Delcomyn, F. (1980) Neural basis of rhythmic behavior in animals. Science 210:492–98. [JASK]CrossRefGoogle ScholarPubMed
Dennett, D. C. (1978) Brainstorms: Philosophical essays on mind and psychology. Montgomery, Vt.: Bradford Books. [JASK]Google Scholar
Desmedt, J. E. (1978) Motor control in man: Long loop mechanisms. Progress in Clinical Neurophysiology, vol. 4. Basel: Karger. [PDN, taRBS]Google Scholar
Dufresne, J. R., Soechting, J. F. & Terzuolo, C. A. (1979) Reflex motor output to torque pulses in man: Identification of short- and long-latency loops with individual feedback parameters. Neuroscience 4:14931500. [CAT]CrossRefGoogle Scholar
Dufresne, J. R., Soechting, J. F. & Terzuolo, C. A.Modulation of the myotatic reflex gain in man during intentional movements. Brain Research 193:6784. [NHo, GFI, taRBS, CAT]CrossRefGoogle Scholar
Easton, T. A. (1972) On the normal use of reflexes. American Scientist 60:591–99. [JASK]Google ScholarPubMed
English, A. W. (1980) Structure and function in calf muscle components in cats. Anatomical Record 196:53A. [AWE]Google Scholar
English, A. W. & Letbetter, W. D. (1982a) Anatomy and innervation patterns of cat lateral gastrocnemius and plantaris muscles. American Journal of Anatomy. In press. [AWE]CrossRefGoogle ScholarPubMed
English, A. W. & Letbetter, W. D. (1982b) A histochemical analysis of identified compartments of cat lateral gastrocnemius muscle. Submitted for publication. [AWE]CrossRefGoogle ScholarPubMed
Ernst, E. (1963) Biophysics of the striated muscle. Budapest: Hungarian Academy of Science. [LDP]Google Scholar
Evarts, E. V. (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. Journal of Neurophysiology 31:1427. [PNSB, NHa, taRBS]CrossRefGoogle ScholarPubMed
Eveleigh, V. W. (1967) Adaptive control and optimization techniques. New York: McGraw-Hill Book Company. [NHo]Google Scholar
Eykhoff, P. (1974) System identification: Parameter and state estimation. London: Wiley. [REK]Google Scholar
Feldman, A. G. (1966a) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. 2. Controllable parameters of the muscle. Biophysics 11:565–78. [AGF]Google ScholarPubMed
Feldman, A. G. (1966b) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. 3. Mechanographic analysis of the execution by man of the simplest motor task. Biophysics 11:766–75. [AGF, JASK, TRN]Google ScholarPubMed
Feldman, A. G. (1974a) Change in the length of the muscle as a consequence of a shift in equilibrium in the muscle-load system. Biophysics 19:544–48. [AGF]Google Scholar
Feldman, A. G. (1974b) Control of length of the muscle. Biophysics 19:766–71. [AGF]Google Scholar
Feldman, A. G. (1980) Superposition of motor programs. 1. Rhythmic forearm movements in man. Neuroscience 5:8190. [AGF, TRN]CrossRefGoogle ScholarPubMed
Feldman, A. G. (1980) Superposition of motor programs. 2. Rapid forearm flexion in man. Neuroscience 5:9195. [JASK]CrossRefGoogle Scholar
Feldman, A. G. & Orlovsky, G. N. (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Experimental Neurology 37:481–94. [AGF, JAH, TRN]CrossRefGoogle ScholarPubMed
Folkins, J. & Abbs, J. H. (1976) Additional observations on responses to resistive loading of the jaw. Journal of Speech and Hearing Research 19:820–21. [JHA]CrossRefGoogle ScholarPubMed
Folkins, J. & Zimmerman, G. N. (1979) Lip and jaw interactions during speech: Responses to perturbation of lip–jaw movement prior to bilabial discourse. Presented at Speech Motor Control Conference, Madison, Wis., 1978. [JHA]Google Scholar
Fokker, A., Yogev, A., Kochler, A. & Inbar, G. F. (1981) Adaptation in the mechanical impedance of the neuromuscular system. Paper no. 8.2.5, IEEE Melecon Conference, Tel Aviv, 05 1981. [GFI]Google Scholar
Fowler, C. (1977) Timing control in speech production. Bloomington: Indiana University Linguistics Club. [JASK]Google Scholar
Gallistel, C. R. (1980) The organization of action: A new synthesis. Hillsdale, N.J.: Lawrence Erlbaum Assoc. [JASK]Google Scholar
Gauthier, G. M., Hofferer, J.-M., Hoyt, W. F. & Stark, L. (1979) Visual-motor adaptation: Quantitative demonstration in patients with posterior fossa involvement. Archives of Neurology 36:155–60. [LS]CrossRefGoogle ScholarPubMed
Gauthier, G. M., Martin, B. & Stark, L. (1981) Proceedings of the Ocular Motor Symposium. California Institute of Technology. [LS]Google Scholar
Gelfand, I. M. & Tsetlin, M. L. (1971) Mathematical modeling of mechanisms of the central nervous system. In: Models of the structural-functional organization of certain biological systems, ed. Gelfand, I. M., Gurfinkel, V. S., Fomin, S. V., & Tsetlin, M. L.. Cambridge, Mass.: MIT Press. [JASK]Google Scholar
Gelfand, I. M., Gurfinkel, V. S., Tsetlin, M. L. & Shik, M. L. (1971) Some problems in the analysis of movements. In: Models of the structural-functional organization of certain biological systems, ed. Gelfand, I. M., Gurfinkel, V. S., Fomin, S. V., & Tsetlin, M. L.. Cambridge: MIT Press. [JASK, GES]Google Scholar
Cibson, J. J. (1979) The ecological approach to visual perceptions. Boston: Houghton Mifflin. [JASK]Google Scholar
Ginat, T. & Inbar, G. F. (1981) Effects of model parameter distribution and multi-loop interaction on the neuromuscular control system. Proceedings of the IEEE MELECON Conference, Tel-Aviv, 05 1981. [GFI]Google Scholar
Goldberger, M. E. & Murray, M. (1974) Restitution of function and collateral sprouting in the cat spinal cord: The deafferented animal. Journal of Comparative Neurology 158:3754. [LMP]CrossRefGoogle ScholarPubMed
Goldspink, G. (1977) Muscle energetics. In: Mechanics and energetics of animal locomotion, ed. Alexander, R. McN., & Goldspink, G., pp. 5781. London: Chapman and Hall. [CMP]Google Scholar
Goldspink, G. (1981) Design of muscle for locomotion and the maintenance of posture. Trends in Neuroscience 4:218–21. [taRBS]CrossRefGoogle Scholar
Gonyea, W. J. & Ericson, G. C. (1977) Morphological and histochemical organization of the flexor carpi radialis muscle in the cat. American Journal of Anatomy 148:329–44. [AWE]CrossRefGoogle ScholarPubMed
Goodwin, G. M. (1977) The sense of limb position and movement. Exercise and Sport Sciences Reviews 4:87124. [WAM]Google Scholar
Goodwin, G. M., Hoffman, D. & Lusehei, E. S. (1978) The strength of the reflex response to sinusoidal stretch of monkey jaw closing muscles during voluntary contraction. Journal of Physiology 279:81111. [taRBS]CrossRefGoogle ScholarPubMed
Gordon, A. M., Huxley, A. F. & Julian, F. J. (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. Journal of Physiology 184:170–92. [taRBS]CrossRefGoogle ScholarPubMed
Goslow, G. E., Seeherman, H. J., Taylor, C. R., McCutchin, M. N. & Heglund, N. C. (1981) Electrical activity and related length changes of dog limb muscles as a function of speed and gait. Journal of Experimental Biology 94:1542. [RMA, CMP]CrossRefGoogle Scholar
Gottlieb, G. L. & Agarwal, G. C. (1980) Response to sudden torques about the ankle in man. 3. Suppression of stretch-evoked responses during phasic contraction. Journal of Neurophysiology 44:233–46. [NHo, LS, taRBS]CrossRefGoogle Scholar
Gottlieb, G., Agarwal, G. & Stark, L. (1970) Interactions between voluntary and postural mechanisms of the human motor system. Journal of Neurophysiology 33:365–81. [LS]CrossRefGoogle Scholar
Graham, D. & Wendler, G. (1981) The reflex behaviour and innervation of the targo-coxal retractor muscles of the stick insect Carausius morosus. Journal of Comparative Physiology 143:8191. [DC]CrossRefGoogle Scholar
Granit, R. (1955) Receptors and sensory perception. New Haven, Conn.: Yale University Press. [RG]Google Scholar
Granit, R. (1970) The basis of motor control. London: Academic Press. [taRBS]Google Scholar
Granit, R. & Kaada, B. R. (1952) Influence of stimulation of central nervous structures on muscle spindles in cat. Acta Physiologica Scandinavica 27:130–60. [RG]CrossRefGoogle ScholarPubMed
Granit, R. & Pompeiano, O., eds. (1979) Reflex control of posture and movement. London, New York: Elsevier/North Holland Biomedical Press. [RG]Google ScholarPubMed
Greene, P. H. (1971) Introduction. In: Models of the structural-functional organization of certain biological systems, ed. Gelfand, I. M., Gurfinkel, V. S., Fomin, S. V., & Tsetlin, M. L.. Cambridge, Mass.: MIT Press, 1971. [JASK]Google Scholar
Grillner, S. (1975) Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews 55:247304. [LMP]CrossRefGoogle ScholarPubMed
Grillner, S. & Udo, M. (1971) Motor unit activity and stiffness of the contacting muscle fibres in the tonic stretch reflex. Acta Physiologica Scandinavica 81:422–24. [TRN]CrossRefGoogle Scholar
Gurfinkel, V. S., Kots, Y. M., Krinskiy, V. I., Paltsev, E. I., Feldman, A. G., Tsetlin, M. L. & Shik, M. L. (1971) Concerning tuning before movement. In: Models of the structural-functional organization of certain biological systems, ed. Gelfand, I. M., Gurfinkel, V. S., Fomin, S. V., & Tsetlin, M. L.. Cambridge, Mass.: M.I.T. Press. [NHo]Google Scholar
Haken, H. (1977) Synergetics: An introduction. New York: Springer-Verlag. [JASK]Google Scholar
Ham, T. M., Botterman, B. R., Reinking, R. M. & Stuart, D. G. (1981) Reflex partitioning in the motor nucleus supplying the cat biceps femoris muscle. Abstracts of the Annual Meeting of the Society for Neuroscience 7:557. [AWE]Google Scholar
Hardt, D. E. (1978) Determining muscle forces in the leg during normal human gait: An application and evaluation of optimization methods. Journal of Biomechanical Engineering 100:7278. [NHo]CrossRefGoogle Scholar
Harvey, N. & Howell, P. (1980) Isotonic vocalis contraction as a means of producing rapid decreases in Fo. Journal of Speech and Hearing Research 23:576–92. [NHa]CrossRefGoogle ScholarPubMed
Hatze, H. (1976) The complete optimzation of a human motion. Mathematical Biosciences 28:99135. [NHo]CrossRefGoogle Scholar
Hatze, H. (1977) A myoeybernetic model of skeletal muscle. Biological Cybernetics 25:103–19. [taRBS]CrossRefGoogle ScholarPubMed
Hatze, H. (1980) Optimal processes of neuro-musculo-skeletal control systems. In: Mathematical modelling in biomathematics, Lecture Notes in Biomathematics 33:1939. Berlin: Springer-Verlag. [taRBS]Google Scholar
Hebb, D. O. (1949) The organization of behavior: A neuropsychological theory. New York: John Wiley and Sons. [JHA]Google Scholar
Helmholtz, H. (1848) Ueber die Wämeentwicklung bei der Muskelaction. Archiv für Anatomie, Physiologie und wissenschaftliche Medizin, Leipzig 144–64. [LDP]Google Scholar
Henneman, E. & Olson, C. B. (1965) Relations between structure and function in the design of skeletal muscle. Journal of Neurophysiology 28:581–98. [AWE]CrossRefGoogle Scholar
Hill, A. V. (1938) The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society, London B, 126:136–95. [taRBS]Google Scholar
Hill, A. V. (1949) The abrupt transition from rest to full activity in muscle. Proceedings of the Royal Society of London 136B:399420. [LDP]Google Scholar
Hoffer, J. A. & Andreassen, S. (1981a) Regulation of soleus muscle stiffness in premammillary cats: Intrinsic and reflex components. Journal of Neurophysiology 45:267–85. [JAH, NHo, JAM, taRBS]CrossRefGoogle ScholarPubMed
Hoffer, J. A. & Andreassen, S. (1981b) Limitations in the servo-regulation of soleus muscle stiffness in premammillary cats. In: Muscle receptors and movement, ed. Taylor, A., & Prochazka, A., pp. 311–24. London: Macmillan. [JAH, taRBS]CrossRefGoogle Scholar
Hoffer, J. A., O'Donovan, M. J., Pratt, C. A. & Loeb, G. E. (1981) Discharge patterns of hindlimb motoneurons during normal cat locomotion. Science 213:466–68. [JAH]CrossRefGoogle ScholarPubMed
Hogan, N. (1981) Adaptive control of natural joint stiffness by antagonist muscles. IEEE Transactions on Automatic Control. [JAH, NHo, tarRBS]Google Scholar
Hogan, N. & Mann, R. W. (1977) Cybernetic considerations in the use of myoelectric activity for prosthesis control. Winter Annual Meeting of the American Society of Mechanical Engineers 77-Wa/BIO-10. [NHo]Google Scholar
Houk, J. C. (1972) The phylogeny of muscular control configurations. In: Biocybernetics, ed. Drischel, H., & Dettmar, P., pp. 125–44. Jena: Gustav Fischer Verlag. [TRN, taRBS]Google Scholar
Houk, J. C. (1977) A two-stage model of neural processes controlling motor output. In: Cybernetics, ed. Hauske, G., pp. 3546. Munich: Oldenbourg. [TV]Google Scholar
Houk, J. C. (1978) Participation of reflex mechanisms and reaction-time processes in the compensatory adjustments to mechanical disturbances. In: Cerebral motor control in man: Long loop mechanisms, ed. Desmedt, J. E., Progress in Clinical Neurophysiology, vol. 4, pp. 193225. Basel: Karger. [JCH]Google Scholar
Houk, J. C. (1979) Motor control processes: New data concerning motoservo mechanisms and a tentative model for stimulus-response processing. In: Posture and movement, ed. Talbott, R. E., & Humphrey, D. E., pp. 231–41. New York: Raven Press. [JCH]Google Scholar
Houk, J. C. (1979) Regulation of stiffness by skeletomotor reflexes. Annual Review of Physiology 41:99114. [AGF, taRBS]CrossRefGoogle ScholarPubMed
Houk, J. C. (1981) Afferent mechanisms mediating autogenetic reflexes. In: Brain mechanisms of perceptual awareness and purposeful behavior, ed. Pompeiano, O., & Marson, C. A., International Brain Research Organization, vol. 8, pp. 167–82. New York: Raven Press. [JCH]Google Scholar
Houk, J. C. & Henneman, E. (1967) Responses of Golgi tendon organs to active contractions of the soleus muscle of the cat. Journal of Neurophysiology 30:466–81. [taRBS]CrossRefGoogle ScholarPubMed
Houk, J. C. & Rymer, W. Z. (1981) Neural control of muscle length and tension. In: Motor control, ed. Brooks, V. B.. Bethesda, Md.: American Physiological Society Handbook of Physiology. [JAH, taRBS, JCH]Google Scholar
Houk, J. C., Rymer, W. Z. & Crago, P. E. (1981) Dependence of dynamic response of spindle receptors on muscle length and velocity. Journal of Neurophysiology 46:143–66. [JCH]CrossRefGoogle ScholarPubMed
Houk, J. C., Singer, J. J. & Goldman, M. R. (1970) An evaluation of length and force feedback to soleus muscles of decerebrate cats. Journal of Neurophysiology 33:784811. [JAM, taRBS]CrossRefGoogle ScholarPubMed
Hughes, O. & Abbs, J. H. (1976) Labial-mandibular coordination in the production of speech: Implication for the operation of motor equivalence. Phonetica 44:199331. [JHA]CrossRefGoogle Scholar
Humphrey, D. R. (1972) Relating motor cortex spike trains to measures of motor performance. Brain Research 40:718. [NHa]CrossRefGoogle ScholarPubMed
Humphrey, D. R., Schmidt, E. M. & Thompson, W. D. (1970) Predicting measures of motor performance from multiple spike trains. Science 179:758–62. [NHa]CrossRefGoogle Scholar
Iberall, A. S. (1977) A field and circuit thermodynamics for integrative physiology 1. Introduction to general notions. American Journal of Physiology/Regulatory, Integrative, & Comparative Physiology 2:R171–R180. [JASK]CrossRefGoogle Scholar
Iberall, A. S. (1978) A field and circuit thermodynamics for integrative physiology. 3. Keeping the books—a general experimental method. American Journal of Physiology/Regulatory, Integrative, & Comparative Physiology 3:R85–R97. [JASK]CrossRefGoogle Scholar
Inbar, G. F. (1972) Muscle spindles in muscle control. 3. Analysis of adaptive system model. Kybernctik 11:130–41. [NHo, GFI]CrossRefGoogle ScholarPubMed
Inbar, G. F. & Yafe, A. (1976) Parameter and signal adaptation in the stretch reflex loop. Progress in Brain Research 44:317–37. [GFI]CrossRefGoogle ScholarPubMed
Inbar, G. F., Madrid, J. & Rudomin, P. (1979) The influence of the gamma system on cross-correlated activity of la muscle spindles and its relation to information transmission. Neuroscience Letters 13:7378. [GFI]CrossRefGoogle Scholar
Kalman, R. E. (1964) When is a linear control system optimal? Transactions of the American Society of Mechanical Engineering Journal of Basic Engineering 86D:5160. [LS]Google Scholar
Katchalsky, A. K., Rowland, V. & Blumenthal, R. (1974) Dynamic patterns of brain cell assemblies. Neurosciences Research Program Bulletin 12(1). [JASK]Google ScholarPubMed
Kearney, R. E. & Hunter, I. W. (1981) Identification of the human ankle stiffness transfer function. Society for Neuroscience Abstracts 7:558. [REK]Google Scholar
Kelso, J. A. S. (1977) Motor control mechanisms underlying human movement reproduction. Journal of Experimental Phpsychology: Human Perception and Performance 3:529–43. [JASK]Google ScholarPubMed
Kelso, J. A. S. (1978) Changing views of feedforward and feedback in voluntary movement. Behavioral and Brain Sciences 1:153–54. [JAH]CrossRefGoogle Scholar
Kelso, J. A. S. (1981) Contrasting perspectives on order and regulation in movement. In: Attention and performance IX, ed. Long, J., & Baddeley, A.. Hillsdale, N.J.; Lawrence Erlbaum Assoc. [JASK]Google Scholar
Kelso, J. A. S. & Holt, K. G. (1980) Exploring a vibratory systems analysis of human movement production. Journal of Neurophysiology 43:1183–96. [JASK]CrossRefGoogle ScholarPubMed
Kelso, J. A. S., Holt, K. G., Kugler, P. N. & Turvey, M. T. (1980) On the concept of coordinative structures as dissipative structures. 2. Empirical lines of convergence. In: Tutorials in motor behavior, ed. Stelmach, G. E., & Requin, J., pp. 4982. New York: North–Holland Publishing Co. [AGF, JASK]CrossRefGoogle Scholar
Kelso, J. A. S., Holt, K. G., Rubin, P. & Kugler, P. N. (in press) Patterns of human interlimb coordination emerge from the properties of non–linear limit cycle oscillatory processes: Theory and data. Journal of Motor Behavior. [JASK]Google Scholar
Kelso, J. A. S., Southard, D. L. & Goodman, D. (1979) On the nature of human interlimb coordination. Science 203:1029–31. [JASK]CrossRefGoogle ScholarPubMed
Kelso, J. A. S., Tuller, B. H. & Harris, K. S. (in press) A “dynamic pattern” perspective on the control and coordination of movement. In: Motor control of speech production, ed. MacNeilage, P.. New York: Springer-Verlag. [JASK]Google Scholar
Kemmerling, S. & Varju, D. (1981) Regulation of the body-to-substrate distance in the stick insect: Responses to sinusoidal stimulation. Biological Cybernetics 39:129–37. [UB]CrossRefGoogle Scholar
Kennedy, J. G. (1977) Compensatory responses of the labial musculature to unanticipated disruption of articulation. Ph.D. dissertation. University of Washington, Seattle. [JHA]Google Scholar
Kernell, D. (1965) The limits of firing frequency in cat lumbosacral motoneurones possessing different time course of afterhyperpolarization. Acta Physiologica Scandinavica 65:87100. [taRBS]CrossRefGoogle Scholar
Kirkwood, P. A. & Sears, T. A. (1974) Monosynaptic excitation of motoneurones from secondary endings of muscle spindles. Nature 252:243–44, [taRBS]CrossRefGoogle ScholarPubMed
Koivo, A. J. & Guo, T. H. (1981) Control of robotic manipulator with adaptive controller. 20th Institute of Electrical and Electronic Engineers Conference on Decision and Control, pp. 271–76. [LS]CrossRefGoogle Scholar
Krarup, C. (1981) Enhancement and diminution of mechanical tension evoked by staircase and tetanus in rat muscle. Journal of Physiology 311:355–72. [taRBS]CrossRefGoogle ScholarPubMed
Krishnan, V. V., Jury, E. I., & Stark, L. (1982) Comparison of generalized feasibility and optimality conditions for linear, error-minimizing biological systems. Bulletin of Mathematical Biology. In press. [LS]CrossRefGoogle Scholar
Kugler, P. N., Kelso, J. A. S. & Turvey, M. T. (1980) On the concept of coordinative structures as dissipative structures. 1. Theoretical lines of convergence. In: Tutorials in motor behavior, ed. Stelmach, G. E., & Requin, J.. New York: North-Holland Publishing Co. [JASK]Google Scholar
Kugler, P. N., Kelso, J. A. S. & Turvey, M. T. (1982) On coordination and control in naturally developing systems. In: The development of human movement control and coordination, ed. Kelso, J. A. S., & Clark, J. C.. New York: John Wiley. [JASK]Google Scholar
Kuo, B. C. (1967) Automatic control systems. 2d ed. Englewood Cliffs, N.J.: Prentice-Hall. [PDN]Google Scholar
Lamarre, Y., Bioulac, B. & Jacks, B. (1978) Activity of precentral neurones in conscious monkey: Effects of deafferentation and cerebellar ablation. Journal of Physiology (Paris) 74:253–64. [TV]Google Scholar
Landau, Y. D. (1979) Adaptive control – the model reference approach. In: Control and system theory, vol. 8, ed. Mendel, J. M.. New York: Marcel Dekker. [GFI]Google Scholar
Lanman, J. M. (1980) Movement and the mechanical properties of the intact human elbow joint. Doctoral dissertation. Department of Psychology, M.I.T. [NHo]Google Scholar
Lehman, S. & Stark, L. (1979) Simulation of linear and nonlinear eye movement models: Sensitivity analyses and enumeration studies of time optimal control. Journal of Cybernetics and Information Science 2:2143. [LS]Google Scholar
Leksell, L. (1945) The action potential and excitatory effects of the small ventral root fibres to skeletal muscle. Acta Physiologica Scandinavica 10, Suppl. 31:184. [taRBS]Google Scholar
Lestienne, F. (1979) Effects of inertial load and velocity on the braking process of voluntary limb movements. Experimental Brain Research 35:407–18. [JASK]CrossRefGoogle ScholarPubMed
Letbetter, W. D. (1974) Influence of intramuscular nerve branching on motor unit organization in medial gastroenemius muscle. Anatomical Record 178:402. [AWE]Google Scholar
Llinas, R. R., & Iberall, A. (1977) A global model of neuronal command-control systems. Biosystems 8:233–35. [JASK]CrossRefGoogle ScholarPubMed
Loeb, G. E. & Duysens, J. (1979) Activity patterns in individual hindlimb primary and secondary muscle spindle afferents during normal movements in unrestrained cats. Journal of Neurophysiology 42:420–40. [taRBS]CrossRefGoogle ScholarPubMed
MacKay, D. M. (1964) Cerebral organization and the conscious control of action. In: Brain and conscious experience, ed. Eccles, J. C., pp. 422–45. Springer-Verlag. [WAM]Google Scholar
MacKay, W. A., Kwan, H. C., Murphy, J. T. & Wong, Y. C. (1980) Modulation of late stretch reflexes during cyclic elbow movement. Society for Neuroscience Abstracts 6:217. [NHo, taRBS]Google Scholar
MacNeilage, P. F. (1970) Motor control of serial ordering of speech. Psychological Review 77:182–96. [GES]CrossRefGoogle ScholarPubMed
Mannard, A. & Stein, R. B. (1973) Determination of the frequency response of isometric soleus muscle in the cat using random nerve stimulation. Journal of Physiology 229:275–96. [REK, taRBS]CrossRefGoogle ScholarPubMed
Marelli, J. D. & Larimer, J. L. (1979) The myochordotonal organ imposes the contractile properties of the receptor muscle onto the flexor muscle of the merus-carpus joint of the crayfish. Society for Neuroscience Abstracts 5:253. [taRBS]Google Scholar
Marsden, C. D., Merton, P. A. & Morton, H. B. (1972). Servo action in human voluntary movement. Nature (London) 238:140–43. [RG]CrossRefGoogle ScholarPubMed
Marsden, C. D., Merton, P. A., Morton, H. B., Rothwell, J. C. & Traub, M. M. (1981) Reliability and efficacy of the long-latency stretch reflex in the human thumb. Journal of Physiology (London) 316:4760. [JAM]CrossRefGoogle ScholarPubMed
Marsden, C. D., Rothwell, J. C. & Day, B. L. (1982) Long latency automatic responses to muscle stretch in man, their origins and their function. In: Brain and spinal mechanisms of movement control in man: New developments and clinical applications, ed. Desmedt, J. E.. New York: Raven Press. In Press. [JAM]Google Scholar
Matthews, P. B. C. (1959a) The dependence of tension upon extension in the stretch reflex of the soleus muscle of the decerebrate cat. Journal of Physiology (London) 147:521–46. [AGF, taRBS]CrossRefGoogle ScholarPubMed
Matthews, P. B. C. (1959b) A study of certain factors influencing the stretch reflex of the decerebrate cat. Journal of Physiology (London) 147:547–64. [TRN]CrossRefGoogle ScholarPubMed
Matthews, P. B. C. (1964) Muscle spindles and their motor control. Physiological Reviews 44:219–88. [taRBS]CrossRefGoogle ScholarPubMed
Matthews, P. B. C. (1969) Evidence that the secondary as well as the primary endings of the muscle spindles may be responsible for the tonic stretch reflex of the decerebrate cat. Journal of Physiology 204:365–93. [taRBS]CrossRefGoogle ScholarPubMed
Matthews, P. B. C. (1972) Mammalian muscle receptors and their central actions. London: Edward Arnold. [CMP, taRBS]Google Scholar
Matthews, P. B. C. & Stein, R. B. (1969) The sensitivity of muscle spindle afferents to small sinusoidal changes in length. Journal of Physiology 200:723–43. [taRBS]CrossRefGoogle Scholar
McRuer, D. (1980) Human dynamics in man–machine systems. Automatica 16:237–57. [REK]CrossRefGoogle Scholar
McRuer, D., Magdaleno, R. E. & Moor, G. (1968) A neuromuscular actuation system model. IEEE Transactions on Man-Machine Systems 9:6171. [GFI]CrossRefGoogle Scholar
Merton, P. A. (1953) Speculations on the servo-control of movement. In: CIBA Foundation Symposium, The spinal cord, ed. Wolstenholme, G. E. W., pp. 247–55. London: Churchill. [HC, NHo, LS, taRBS]CrossRefGoogle Scholar
Miles, F. A. & Evarts, E. V. (1979) Concepts of motor organization. Annual Review of Psychology 30:327–62. [tarRBS]CrossRefGoogle ScholarPubMed
Milgram, P. & Inbar, G. F. (1976) Distortion suppression in the neuromuscular information transmission due to interchannel dispersion in muscle spindle firing thresholds. IEEE Transactions on Biomedical Engineering 23:115. [GFI]CrossRefGoogle ScholarPubMed
Miller, G. A. (1956) The magical number seven plus or minus two: some limits on our capacity for processing information. Psychological Review 63:8197. [rRBS]CrossRefGoogle ScholarPubMed
Minorsky, N. (1962) Nonlinear oscillations. Princeton, N.J.: Van Nostrand. [JASK]Google Scholar
Morasso, P. (1981) Spatial control of arm movements. Experimental Brain Research 42:223–27. [LS]CrossRefGoogle ScholarPubMed
Morowitz, H. J. (1968) Energy flow in biology: Biological organization as a problem in thermal physics. New York: Academic Press. [JASK]Google Scholar
Morrison, J. B. (1970) The mechanics of muscle function in locomotion. Journal of Biomechanics 3:431–51. [RMA]CrossRefGoogle ScholarPubMed
Mott, F. W. & Sherrington, C. S. (1895) Experiments upon the influence of sensory nerves upon movements and nutrition. Proceedings of the Royal Society B57:481–88. [RG]Google Scholar
Muller, E. (1977) Studies on perioral biomechanics. Report NS-13274–01, Clinical Research Center for Neurogenic Speech Disorders, Department of Communicative Disorders, University of Wisconsin, pp. 4253. [PDN]Google Scholar
Nashner, L. M. (1977) Fixed patterns of rapid postural responses among leg muscles during stance. Experimental Brain Research 30:1324. [JASK]CrossRefGoogle ScholarPubMed
Navas, F. & Stark, L. (1968) Sampling or intermittency in the hand control system. Biophysical Journal 8:252302. [LS]CrossRefGoogle ScholarPubMed
Neilson, P. D. (1973) The action stretch reflex and the role of cutaneous pressure receptors. Digest of the 10th International Conference on Medical and Biological Engineering, Dresden, 311, p. 54. [PDN]Google Scholar
Neilson, P. D., Andrews, G., Guitar, B. E. & Quinn, P. T. (1979) Tonic stretch reflexes in lip, tongue and jaw muscles. Brain Research 178:311–27. [PDN]CrossRefGoogle ScholarPubMed
Neilson, P. D. & McCaughey, J. (1982) Effect of contraction level and magnitude of stretch on tonic stretch reflex transmission characteristics. Journal of Neurology, Neurosurgery and Psychiatry. In press. [PDN]Google Scholar
Neilson, P. D. & Neilson, M. D. (1978) The role of action reflexes in damping mechanical oscillations. Brain Research 142:439–53. [PDN]CrossRefGoogle ScholarPubMed
Nichols, T. R. (1973) Reflex and non-reflex stiffness of soleus muscle in the cat. In: Control of posture and locomotion, ed. Stein, R. B., Pearson, K. B., Smith, R. S., & Reford, J. B., pp. 407–10. New York: Plenum Press. [TRN]CrossRefGoogle Scholar
Nichols, T. R. (1981) Evidence for authentic changes in the gain of an autogenetic reflex in the soleus muscle of the decerebrate cat. Neuroscience Abstracts 7:688. [JAH]Google Scholar
Nichols, T. R. & Houk, J. C. (1976) The improvement in linearity and the regulation of stiffness that results from the actions of the stretch reflex. Journal of Neurophysiology 39:119–42. [AGF, JAH, JCH, NHo, TRN, taRBS]CrossRefGoogle ScholarPubMed
Nicolis, G. & Prigogine, I. (1977) Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. New York: Wiley-Interscience. [JASK]Google Scholar
Noton, D. & Stark, L. (1971) Eye movements and visual perception. Scientific American 224:3443. [LS]Google ScholarPubMed
Okubo, A. (1980) Diffusion and ecological problems: Mathematic models. Berlin, Heidelberg: Springer-Verlag. [JASK]Google Scholar
Osborn, C. E. & Binder, M. D. (1981) Correlation analysis of muscle spindle and tendon organ afferents in active muscle. Abstracts of the Annual Meeting of the Society for Neuroscience 7:409. [AWE]Google Scholar
Parmiggiani, F. & Stein, R. B. (1981) Nonlinear summation of contractions in cat muscles. 2. The later facilitation and stiffness changes. Journal of General Physiology 78:295311. [taRBS]CrossRefGoogle Scholar
Parmiggiani, F., Stein, R. B. & Rolf, R. (1981) Slow changes and Wiener analysis of nonlinear summation in contractions of cat muscles. Biological Cybernetics. In press. [taRBS]Google Scholar
Partridge, L. D. (1972) Interrelationships studied in a semibiological “reflex.” American Journal of Physiology 223:144–58. [LDP]CrossRefGoogle Scholar
Partridge, L. D. (1978) Methods in the study of proprioception. In: Handbook of engineering in biology and medicine, ed. Feinberg, B. N., & Fleming, D. G., 2:211–55. West Palm Beach: CRC Press. [LDP]Google Scholar
Partridge, L. D. (1982) The good enough calculi of evolving control systems: Evolution is not engineering. American Journal of Physiology 242 (Regulatory, Integrative and Comparative Physiology 11:R–; (in press). [LDP]Google Scholar
Partridge, L. D. & Benton, L. A. (1981) Muscle the motor. In: The nervous system, ed. Brooks, V. B., 2:43106, in Handbook of physiology. Bethseda, Md.: American Physiological Society. [LDP]Google Scholar
Paul, R. (1972) Modelling trajectory calculation and servoing of a computer controlled arm. Stanford Artificial Intelligence Memo No. 177. [LS]Google Scholar
Pearson, K. G. (1972) Central programming and reflex control of walking in the cockroach. Journal of Experimental Biology 56:173–93. [DG]CrossRefGoogle Scholar
Pedotti, A., Krishnan, V. V. & Stark, L. (1978) Optimization of muscle-force sequencing in human locomotion. Mathematical Biosciences 38:5776. [LS]CrossRefGoogle Scholar
Pflüger, H. J. (1977) The control of the rocking movements of the phasmid Carausius morosus. Br. Journal of Comparative Physiology 120:181202. [UB]CrossRefGoogle Scholar
Polit, A. & Bizzi, E. (1978) Processes controlling arm movements in monkeys. Science 201:1235–37. [JASK]CrossRefGoogle ScholarPubMed
Polit, A. & Bizzi, E. (1979) Characteristics of motor programs underlying arm movements in monkeys. Journal of Neurophysiology 42:183–94. [NHo, GFI, TRN]CrossRefGoogle ScholarPubMed
Pompeiano, O. & Ajmone Marsan, C., eds. (1981) Brain mecahnisms of perceptual awareness and purposeful behavior. New York: Raven Press. [RG]Google Scholar
Pontryagin, L., Bottyanskii, V., Camkendze, R. & Mischenko, E. (1962) The mathematical theory of optimal processes, trans. Trigoroff, K. N.. New York: Wiley Interscience. [taRBS]Google Scholar
Powers, W. T. (1979) The nature of robots. 2. Simulated control system. Byte 4:134–52. [WAM]Google Scholar
Prigogine, I. (1980) From being to becoming: Time and complexity in the physical sciences. San Francisco: W. H. Freeman & Co. [JASK]Google Scholar
Pringle, J. W. S. (1957) Insect flight. New York: Cambridge University Press. [CMP]Google Scholar
Prochazka, A., Stephens, J. A. & Wand, P. (1979) Muscle spindle discharge in normal and obstructed movements. Journal of Physiology 287:5766. [taRBS]CrossRefGoogle ScholarPubMed
Richmond, F. J. R. & Abrahams, V. C. (1975) Morphology and distribution of muscle spindles in dorsal neck muscles of the cat. Journal of Neurophysiology 38:1322–39. [AWE]CrossRefGoogle ScholarPubMed
Roberts, T. D. M. (1963) Rhythmic excitation of a stretch reflex, revealing (a) hysteresis and (b) a difference between the responses to pulling and to stretching. Quarterly Journal of Experimental Physiology 48:328–45. [TDMR]CrossRefGoogle Scholar
Robinson, D. A. (1975) Oculomotor control signals. In: Basic mechanisms of ocular motility and their clinical implications, ed. Lennerstrand, G., & Bach-y-Rita, P., pp. 337–74. Pergamon. [WAM]Google Scholar
Robinson, D. A. (1976) Adaptive gain control of vestibuloocular reflex by the cerebellum. Journal of Neurophysiology 39:954–69. [tarRBS]CrossRefGoogle ScholarPubMed
Roland, P. E. (1978) Sensory feedback to the cerebral cortex during voluntary movement in man. Behavioral and Brain Sciences 1:129–71. [taRBS]CrossRefGoogle Scholar
Rosen, R. (1978) Fundamentals of measurement and representation of natural systems. New York: North-Holland. [JASK]Google Scholar
Rymer, W. Z. & Hasan, Z. (1980) Absence of force-feedback regulation in soleus muscle of the decerebrate cat. Brain Research 184:203–9. [taRBS]CrossRefGoogle ScholarPubMed
Saltzman, E. (1979) Levels of sensorimotor representation. Journal of Mathematical Psychology 20:91163. [JASK]CrossRefGoogle Scholar
Schmidt, R. A. (1980) Past and future issues in motor programming. Research Quarterly for Exercise and Sport 51:122–40. [AGF]CrossRefGoogle ScholarPubMed
Schmidt, R. A. & McGown, C. (1980) Terminal accuracy of unexpectedly loaded rapid movements: Evidence for a mass-spring mechanism in programming. Journal of Motor Behavior 12:149–61. [JASK]CrossRefGoogle ScholarPubMed
Searle, J. (1980) Minds, brains and programs. Behavioral and Brain Sciences 3:417–57. [JASK]CrossRefGoogle Scholar
Sherrington, C. S. (1906) The integrative action of the nervous system. London: Constable. [JASK]Google Scholar
Shik, M. L. & Orlovskii, G. N. (1976) Neurophysiology of locomotor automatism. Physiological Reviews 56:465501. [JASK]CrossRefGoogle ScholarPubMed
Smith, J. L., Betts, B., Edgerton, V. R. & Zernicke, R. F. (1980) Rapid ankle extension during paw shakes: Selective recruitment of fast ankle extensors. Journal of Neurophysiology 43:619–29. [rRBS]CrossRefGoogle ScholarPubMed
Smith, J. L., Edgerton, V. R., Betts, B. & Collatos, T. C. (1977) EMG of slow and fast ankle extensors of cat during posture, locomotion and jumping. Journal of Neurophysiology 40:503–13. [rRBS]CrossRefGoogle ScholarPubMed
Smith, O. J. M. (1962) Nonlinear computation in the human controller. Institute of Radio Engineers Transactions on Bio-Medical Electronics BME-9:125–28. [LS]Google Scholar
Soechting, J. F., Dufresne, J. R. & Lacquaniti, F. (1981) Time-varying properties of myotatic response in man during some simple motor tasks. Journal of Neurophysiology 46:1226–43. [CAT]CrossRefGoogle ScholarPubMed
Soodak, H. & Iberall, A. S. (1978) Homeokinetics: A physical science for complex systems. Science 201:579–82. [JASK]CrossRefGoogle ScholarPubMed
Stark, L. (1959) Stability, oscillations and noise in the human pupil servomechanism. Proceedings of Institute of Radio Engineers IRE 47:1925–39. [LS]Google Scholar
Stark, L. (1961) Neurological organization of the control system for movement. Quarterly Progress Report, Research Laboratory of Electronics, Massachusetts Institute of Technology 61:230–34. [LS]Google Scholar
Stark, L. (1968) Neurological control systems: Studies in bioengineering. New York: Plenum Press. [LS, taRBS]Google Scholar
Stark, L. (1971) The control system for versional eye movements. In: The control of eye movements, ed. Bach-y-Rita, P., Collins, C. C., & Hyde, J. E., pp. 363428. New York: Academic Press. [LS]CrossRefGoogle Scholar
Stark, L. & Ellis, S. R. (1981) Scanpaths revisited: Cognitive models direct active looking. In: Eye movements, cognition, and visual perception, ed. Fisher, D. F., Monty, R. A., & Senders, J. W., pp. 193226. Hillsdale, N.J.: Lawrence Erlbaum Assoc. [LS]Google Scholar
Stark, L., Hoyt, W., Ciuffreda, K., Kenyon, R. & Hsu, F. (1981) Time optimal saccadic trajectory model and voluntary nystagmus. In: Models of Oculomotor Behavior and Control, ed. Zuber, B. L., pp. 7589. Boca Raton, Fla.: CRC Press. [LS]Google Scholar
Stark, L., Kong, R., Schwartz, S., Hendry, D. & Bridgeman, B. (1976) Saccadic suppression of image displacement. Vision Research 16:1185–87. [LS]Google ScholarPubMed
Stark, L., Kupfer, C. & Young, L. R. (1965) Physiology of the visual control system. NASA Contractor Report CR-238:188. [LS]Google Scholar
Stark, L., Okabe, Y. & Willis, P. A. (1962) Sampled data properties of the human motor coordination system. Quarterly Progress Report, Research Laboratory of Electronics, Massachusetts Institute of Technology 67:220–23. [LS]Google Scholar
Stauffer, E. K., Watt, D. G. D., Taylor, A., Reinking, R. M. & Stuart, D. G. (1976) Analysis of muscle receptor connections by spike-triggered averaging. 2. Spindle group II afferents. Journal of Neurophysiology 39:13931402. [taRBS]CrossRefGoogle ScholarPubMed
Stein, R. B. (1970) The role of spike trains in transmitting and distorting sensory signals. In: The neurosciences. Second study program, ed. Schmidt, F. O., pp. 597604. New York: Rockefeller University Press. [tarRBS]Google Scholar
Stein, R. B. (1974) The peripheral control of movement. Physiological Reviews 54:215–43. [taRBS]CrossRefGoogle ScholarPubMed
Stein, R. B. (1980) Nerve and muscle: membranes, cells, and systems. New York: Plenum Press. [taRBS]CrossRefGoogle Scholar
Stein, R. B. & Lee, R. G. (1981) Tremor and clonus. In: Motor Control, ed. Brooks, V. B.. Bethesda, Md.: American Physiological Society. [tarRBS]Google Scholar
Stein, R. B. & Oǧuztöreli, M. N. (1976a) Tremor and other oscillations in neuromuscular systems. Biological Cybernetics 22:147–57. [taRBS]CrossRefGoogle ScholarPubMed
Stein, R. B. & Oǧuztöreli, M. N. (1976b) Does the velocity sensitivity of muscle spindles stabilize the stretch reflex? Biological Cybernetics 23:219–28. [tarRBS]CrossRefGoogle Scholar
Stein, R. B. & Oǧuztöreli, M. N. (1981) The role of γ-motoneurons in mammalian reflex systems. Biological Cybernetics 39:171–79. [taRBS]CrossRefGoogle ScholarPubMed
Stein, R. B. & Parmiggiani, F. (1979) Optimal motor patterns for activating mammalian muscle. Brain Research 175:372–76. [taRBS]CrossRefGoogle ScholarPubMed
Stein, R. B. & Parmiggiani, F. (1981) Nonlinear summation of contractions in cat muscles. 1. The early depression. Journal of General Physiology 78:277–93. [GFI, taRBS]CrossRefGoogle ScholarPubMed
Stelmach, G. E. & Diggles, V. A. (1982) Control theories in motor behavior. Acta Psychologica. In press. [GES]CrossRefGoogle Scholar
Stevens, K. N. (1977) Physics of laryngeal behaviour and larynx modes. Phonetica 34:264–79. [NHa]CrossRefGoogle ScholarPubMed
Storrer, J. & Cruse, H. (1977) Systemanalytische Untersuchung eines aufgeschnittenen Regelkreises, der die Beinstellung der Stabheuschrecke Carausius morosus kontrolliert: Kraftmessungen an den antagonisten Flexor und Extensor tibiae. Biological Cybernetics 25:131–42. [UB]CrossRefGoogle Scholar
Stuart, D. G.; Withey, T. P., Wetzel, M. C. & Goslow, G. E. Jr. (1973) Time constraints for inter-limb co-ordination in the cat during unrestrained locomotion. In: Control of Posture and Locomotion, ed. Stein, R. B., Pearson, K. G., Smith, R. S., & Redford, J. B., pp. 537–60. New York: Plenum Press. [taRBS]CrossRefGoogle Scholar
Sugie, N. & Wakakuwa, M. (1970) Visual target tracking with active head rotation. Institute of Electrical and Electronic Engineers Transactions on Systems, Science and Cybernetics SSC-6:103–9. [LS]Google Scholar
Szentagothai, J. (1978) A false alternative. Behavioral and Brain Sciences 3:367–68. [J ASK]CrossRefGoogle Scholar
Szentagothai, J. & Arbib, M. A., eds. (1974) Conceptual models of neural organization. Neurosciences Research Program Bulletin 12(3). [JASK]Google ScholarPubMed
Tábǒríková, H. & Sax, D. S. (1969) Conditioning of H-reflexes by a preceding subthreshold H-reflex stimulus. Brain 92:203–12. [taRBS]CrossRefGoogle ScholarPubMed
Talbott, R. E. (1979) Ferrier, the synergy concept, and the study of posture and movement. In: Posture and movement, ed. Talbott, R. E., & Humphrey, D. R.. New York: Raven Press. [JASK]Google Scholar
Taub, E. & Berman, A. J. (1968) Movement and learning in the absence of sensory feedback. In: The neuropsychology of spatially oriented behavior, ed. Freidman, S. J., pp. 173–92. Homewood, Ill.: Dorsey Press. [LMP]Google Scholar
Terzuolo, C., Soechting, J. F. & Dufresne, J. R. (1981) Operational characteristics of reflex responses to changes in muscle length during different motor tasks and their functional utility. In: Brain mechanisms of perceptual awareness and purposeful behavior, IBRO Monograph Series, vol. 8, pp. 183209. New York: Raven Press. [CAT]Google Scholar
Turvey, M. T. (1977) Preliminary to a theory of action with reference to vision. In: Perceiving, acting and knowing: Toward an ecological psychology, ed. Shaw, R. E., & Bransford, J., pp. 211–65. Hillsdale, N.J.: Lawrence Erlbaum Assoc. [JASK, GES]Google Scholar
Turvey, M. T., Shaw, R. E. & Mace, W. (1978) Issues in the theory of action: Degrees of freedom, coordinative structures and coalitions. In: Attention and performance VII, ed. Requin, J., pp. 557–98. Hillsdale, N.J.: Lawrence Erlbaum Assoc. [JASK, GES]Google Scholar
Umano, M., Mizumoto, M. & Tanaka, K. (1978) FSTDS system: A fuzzy-set manipulation system. Information Sciences 14:115–59. [LS]CrossRefGoogle Scholar
Vallbo, Å. B. (1973) The significance of intramuscular receptors in load compensation during voluntary contractions in man. In: Control of posture and locomotion, ed. Stein, R. B., Pearson, K. G., Smith, R. S., & Redford, J. B., pp. 211–26. New York: Plenum Press. [JAM, taRBS]CrossRefGoogle Scholar
Viviani, P. & Terzuolo, C. A. (1973) Modeling of a simple motor task in man: Intentional arrest of an ongoing movement. Kybernetik 14:3562. [CAT]CrossRefGoogle ScholarPubMed
Wagner, R. (1960) Über Regelung von Muskelkraft und Bewegungsgeschwindigkeit bei der Willkürbewegung. Zeitschrift für Biologie 111:449–78. [HC]Google Scholar
Walmsley, B., Hodgson, J. A. & Burke, R. E. (1978) Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. Journal of Neurophysiology 41:1203–16. [taRBS]CrossRefGoogle ScholarPubMed
Warren, W. H. & Shaw, R. E. (1981) Psychophysics and ecometrics. Behavioral and Brain Sciences 4:209–10. [JASK]CrossRefGoogle Scholar
Weber, E. (1846) Muskelbewegung. In: Handwörterbuch der physiologie, ed. Wagner, R., vol. 3, pt. 2, 1122. Braunschweig, Germany: Bieweg. [LDP]Google Scholar
Wendler, G. (1964) Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Zeitschrift für vergleichende Physiologie 48:198250. [HC]CrossRefGoogle Scholar
Winfree, A. T. (1980) The geometry of biological time. New York: Springer-Verlag.CrossRefGoogle Scholar
Yates, F. E. (1980) Getting the homunculus out of the head. American Journal of Physiology 239:R36364. [JASK]Google ScholarPubMed
Yates, F. E. (in press) Systems analysis of hormone action: Principles and strategies. In Biological regulation and development, vol. 3: Hormone action, ed. Goldberger, R. F.. New York: Plenum Press. [JASK]Google Scholar
Yates, F. E. & Iberall, A. S. (1973) Temporal and hierarchical organization in biosystems. In: Temporal aspects of therapeutics, ed. Urquhart, J., & Yates, F. E.. New York: Plenum Press. [JASK]Google Scholar
Young, L. (1969) The current status of vestibular system models. Automatica 5:369–83. [taRBS]CrossRefGoogle Scholar
Young, L. (1973) Human control capabilities. In: Bioastronautics data book, ed. Parker, J. F., & West, V. R., pp. 751806. Washington, D.C.: Scientific and Technical Office, NASA. [GFI]Google Scholar
Young, L. R. & Stark, L. (1963a) A discrete model for eye tracking movements. Institute of Electrical and Electronic Engineers Transactions on Military Electronics MIL-7:113–15. [LS]Google Scholar
Young, L. R. & Stark, L. (1963b) Variable feedback experiments testing a sample data model for eye tracking movements. Institute of Electrical and Electronic Engineers Transactions on Human Factors in Electronics HFE-4:3851. [LS]Google Scholar
Zadeh, L. A. (1965) Fuzzy sets. Information and Control 8:338–53. [LS]CrossRefGoogle Scholar
Zangemeister, W. H. & Stark, L. (1981) Active head rotations and eye–head coordination. In: Vestibular and oculomotor physiology: International meeting of the Barany Society, ed. Cohen, B., pp. 540–59. New York: Annals of the New York Academy of Sciences. [LS]Google Scholar