Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T14:11:27.285Z Has data issue: false hasContentIssue false

Culture and causal inference: The impact of cultural differences on the generalisability of findings from Mendelian randomisation studies

Published online by Cambridge University Press:  13 September 2022

Amy Campbell
Affiliation:
MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, [email protected] School of Psychological Science, University of Bristol, Bristol BS8 1TU, [email protected]
Marcus R. Munafò
Affiliation:
MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, [email protected] School of Psychological Science, University of Bristol, Bristol BS8 1TU, [email protected]
Hannah M. Sallis
Affiliation:
MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, [email protected] School of Psychological Science, University of Bristol, Bristol BS8 1TU, [email protected] Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, [email protected]
Rebecca M. Pearson
Affiliation:
Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK Faculty of Health, Psychology & Social Care, Manchester Metropolitan University, Manchester M15 6GX, [email protected]
Daniel Smith
Affiliation:
MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, [email protected] Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, [email protected]

Abstract

Cultural effects can influence the results of causal genetic analyses, such as Mendelian randomisation, but the potential influences of culture on genotype–phenotype associations are not currently well understood. Different genetic variants could be associated with different phenotypes in different populations, or culture could confound or influence the direction of the association between genotypes and phenotypes in different populations.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdellaoui, A., & Verweij, K. J. (2021). Dissecting polygenic signals from genome-wide association studies on human behaviour. Nature Human Behaviour, 5, 686694. doi: https://doi.org/10.1038/s41562-021-01110-y.CrossRefGoogle ScholarPubMed
Abdellaoui, A., Hugh-Jones, D., Yengo, L., Kemper, K. E., Nivard, M. G., Veul, L., & (2019). Genetic correlates of social stratification in Great Britain. Nature Human Behaviour, 3(5), 13321342. doi: 10.1038/s41562-019-0757-5.CrossRefGoogle ScholarPubMed
Bowles, S., Gintis, H., & Groves, M. O. (2009). Unequal chances: Family background and economic success. Princeton University Press.CrossRefGoogle Scholar
Cohen, A. K., Rai, M., Rehkopf, D. H., & Abrams, B. (2013). Educational attainment and obesity: A systematic review. Obesity Review, 14(12), 9891005. doi: 10.1111/obr.12062.CrossRefGoogle ScholarPubMed
Headey, D. D., & Alderman, H. A. (2019). The relative caloric prices of healthy and unhealthy foods differ systematically across income levels and continents. The Journal of Nutrition, 149(11), 20202033. doi: 10.1093/jn/nxz158.CrossRefGoogle ScholarPubMed
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 6183. doi: 10.1017/S0140525X0999152X.CrossRefGoogle ScholarPubMed
Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M., & Daly, M. J. (2021). Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics, 54, 584591. doi: 10.1038/s41588-019-0379-xGoogle Scholar
Morris, T. T., Davies, N. M., Hemani, G., & Davey Smith, G. (2020). Population phenomena inflate genetic associations of complex social traits. Science Advances, 6. doi: 10.1126/sciadv.aay0328CrossRefGoogle ScholarPubMed
Psacharopoulos, G., & Patrinos, H. A. (2018). Returns to investment in education: A decennial review of the global literature. Education Economics, 28(5), 445458. doi: https://doi.org/10.1080/09645292.2018.1484426.CrossRefGoogle Scholar
Rogers, A. R., & Jorde, L. B. (1987). The effect of non-random migration on genetic differences between populations. Annals of Human Genetics, 51(2), 169-176. doi: 10.1111/j.1469-1809.1987.tb01059.x.CrossRefGoogle ScholarPubMed
Sanderson, E., Davey Smith, G., Windmeijer, F., & Bowden, J. (2019). An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. International Journal of Epidemiology, 49(3), 713727. doi: 10.1093/ije/dyaa101.CrossRefGoogle Scholar
Scutari, M., Mackay, I., & Balding, D. (2016). Using genetic distance to infer the accuracy of genomic prediction. PLoS Genetics, 12(9). doi: 10.1371/journal.pgen.1006288.CrossRefGoogle ScholarPubMed
Sebro, R., & Risch, N. J. (2012). A brief note on the resemblance between relatives in the presence of population stratification. Heredity, 108, 563568. doi: https://doi.org/10.1038/hdy.2011.124.CrossRefGoogle ScholarPubMed
Smith, G. D., & Ebrahim, S. (2002). Data dredging, bias, or confounding. British Medical Journal, 326(7378), 14371438. doi: 10.1136/bmj.325.7378.1437.CrossRefGoogle Scholar
Smith, G. D., & Ebrahim, S. (2003). “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology, 32(1), 122. doi: https://doi.org/10.1093/ije/dyg070.CrossRefGoogle ScholarPubMed
Yengo, L., Robinson, M. R., Keller, M. C., Kemper, K. E., Yang, Y., Trzaskowski, M., … Visscher, P. M. (2018). Imprint of assortative mating on the human genome. Nature Human Behaviour, 2, 948954. doi: https://doi.org/10.1038/s41562-018-0476-3.CrossRefGoogle ScholarPubMed