Published online by Cambridge University Press: 07 September 2010
INTRODUCTION
Achieving in vivo imaging of gene transfer provides molecular imaging with exciting opportunities in applications such as tracking stem or progenitor cells after transplantation or guiding efficacy studies of gene therapy. Monitoring of transgene expression is routinely accomplished by coexpressing marker genes with potential therapeutic transgenes in small laboratory animals. In this standard approach, the animals are sacrificed and methods such as histology or fluorescence microscopy (e.g., see) are performed on appropriate tissue samples to analyze the presence of marker gene expression. As with other biological studies, it is desirable to perform these studies routinely using noninvasive imaging to increase efficiency and information content associated with monitoring transgene expression over time in the same research subject.
In this chapter we describe currently available imaging technologies utilized in the reporter gene imaging research described in this book. These technologies exploit energy emissions that span nearly the entire range of the electromagnetic spectrum. The imaging system's function is to collect these signals and form images that can be analyzed to monitor the spatiotemporal characteristics of certain cellular and molecular processes occurring in cells located within tissues of living subjects. Certain imaging systems actually excite the processes that produce the detected signal, as in the case of optical fluorescence or magnetic resonance imaging. The molecular imaging technologies described in this book for noninvasive reporter gene imaging include optical techniques that utilize fluorescence or bioluminescence light photon emissions, the radionuclide methods of positron emission tomography and single photon emission tomography that collect positron annihilation or gamma ray photons, respectively, and magnetic resonance methods that rely on emissions from the radiofrequency portion of the electromagnetic spectrum.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.