Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T13:01:42.013Z Has data issue: false hasContentIssue false

Chapter 18 - Acquired Aplastic Anemia and Pure Red Cell Aplasia

from Section 3, Part E - Hypoplastic Anemias

Published online by Cambridge University Press:  18 April 2018

Edward J. Benz, Jr.
Affiliation:
Dana Farber Cancer Institute
Nancy Berliner
Affiliation:
Brigham and Women's Hospital, Boston
Fred J. Schiffman
Affiliation:
Children's Hospital, Boston
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Anemia
Pathophysiology, Diagnosis, and Management
, pp. 128 - 136
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Young, NS, Kaufman, DW. The epidemiology of acquired aplastic anemia. Haematologica. 2008; 93(4):489492.CrossRefGoogle ScholarPubMed
Zaimoku, Y, Takamatsu, H, Hosomichi, K, Ozawa, T, Nakagawa, N, Imi, T, et al. Identification of an HLA class I allele closely involved in the autoantigen presentation in acquired aplastic anemia. Blood. 2017; 129(21):29082916.CrossRefGoogle Scholar
Babushok, DV, Duke, JL, Xie, HM, Stanley, N, Atienza, J, Perdigones, N, et al. Somatic HLA mutations expose the role of class I-mediated autoimmunity in aplastic anemia and its clonal complications. Blood Adv. 2017; 1:19001910.CrossRefGoogle ScholarPubMed
Nakao, S, Takamatsu, H, Chuhjo, T, Ueda, M, Shiobara, S, Matsuda, T, et al. Identification of a specific HLA class II haplotype strongly associated with susceptibility to cyclosporine-dependent aplastic anemia. Blood. 1994; 84(12):42574261.CrossRefGoogle ScholarPubMed
Young, NS, Calado, RT, Scheinberg, P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood. 2006; 108(8):25092519.CrossRefGoogle ScholarPubMed
Ehrlich, P. Uber einen Fall von Anamie mit Bemerkungen uber regenerative Veranderungen des Knochenmarks. Charite-Annalen. 1888; 13:300.Google Scholar
Pegg, DE, Fleming, WJ, Compston, N. A case of aplastic anaemia treated by isologous bone marrow infusion. Postgrad Med J. 1964; 40:213216.CrossRefGoogle Scholar
Thomas, ED, Storb, R, Giblett, ER, Longpre, B, Weiden, PL, Fefer, A, et al. Recovery from aplastic anemia following attempted marrow transplantation. Exp Hematol. 1976; 4(2):97102.Google ScholarPubMed
Ascensao, J, Pahwa, R, Kagan, W, Hansen, J, Moore, M, Good, R. Aplastic anaemia: evidence for an immunological mechanism. Lancet. 1976; 1(7961):669671.Google Scholar
Dunn, DE, Tanawattanacharoen, P, Boccuni, P, Nagakura, S, Green, SW, Kirby, MR, et al. Paroxysmal nocturnal hemoglobinuria cells in patients with bone marrow failure syndromes. Ann Intern Med. 1999; 131(6):401408.CrossRefGoogle ScholarPubMed
Katagiri, T, Sato-Otsubo, A, Kashiwase, K, Morishima, S, Sato, Y, Mori, Y, et al. Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia. Blood. 2011; 118(25):66019660.Google Scholar
Socie, G, Rosenfeld, S, Frickhofen, N, Gluckman, E, Tichelli, A. Late clonal diseases of treated aplastic anemia. Semin Hematol. 2000; 37(1):91101.CrossRefGoogle ScholarPubMed
Gupta, V, Eapen, M, Brazauskas, R, Carreras, J, Aljurf, M, Gale, RP, et al. Impact of age on outcomes after bone marrow transplantation for acquired aplastic anemia using HLA-matched sibling donors. Haematologica. 2010; 95(12):21192125.CrossRefGoogle ScholarPubMed
Locasciulli, A, Oneto, R, Bacigalupo, A, Socie, G, Korthof, E, Bekassy, A, et al. Outcome of patients with acquired aplastic anemia given first line bone marrow transplantation or immunosuppressive treatment in the last decade: a report from the European Group for Blood and Marrow Transplantation (EBMT). Haematologica. 2007; 92(1):1118.CrossRefGoogle ScholarPubMed
Storb, R, Etzioni, R, Anasetti, C, Appelbaum, FR, Buckner, CD, Bensinger, W, et al. Cyclophosphamide combined with antithymocyte globulin in preparation for allogeneic marrow transplants in patients with aplastic anemia. Blood. 1994; 84(3):941949.CrossRefGoogle ScholarPubMed
Maury, S, Bacigalupo, A, Anderlini, P, Aljurf, M, Marsh, J, Socie, G, et al. Improved outcome of patients older than 30 years receiving HLA-identical sibling hematopoietic stem cell transplantation for severe acquired aplastic anemia using fludarabine-based conditioning: a comparison with conventional conditioning regimen. Haematologica. 2009; 94(9):13121315.Google Scholar
Bacigalupo, A, Socie, G, Schrezenmeier, H, Tichelli, A, Locasciulli, A, Fuehrer, M, et al. Bone marrow versus peripheral blood as the stem cell source for sibling transplants in acquired aplastic anemia: survival advantage for bone marrow in all age groups. Haematologica. 2012; 97(8):11421148.Google Scholar
Bacigalupo, A, Marsh, JC. Unrelated donor search and unrelated donor transplantation in the adult aplastic anaemia patient aged 18–40 years without an HLA-identical sibling and failing immunosuppression. Bone Marrow Transplant. 2013; 48(2):198200.CrossRefGoogle ScholarPubMed
DeZern, AE, Zahurak, M, Symons, H, Cooke, K, Jones, RJ, Brodsky, RA. Alternative donor transplantation with high-dose post-transplantation cyclophosphamide for refractory severe aplastic anemia. Biol Blood Marrow Transplant. 2017; 23(3):498504.Google Scholar
Esteves, I, Bonfim, C, Pasquini, R, Funke, V, Pereira, NF, Rocha, V, et al. Haploidentical BMT and post-transplant Cy for severe aplastic anemia: a multicenter retrospective study. Bone Marrow Transplant. 2015; 50(5):685689.CrossRefGoogle ScholarPubMed
Frickhofen, N, Kaltwasser, JP, Schrezenmeier, H, Raghavachar, A, Vogt, HG, Herrmann, F, et al. Treatment of aplastic anemia with antilymphocyte globulin and methylprednisolone with or without cyclosporine. The German Aplastic Anemia Study Group. N Engl J Med. 1991; 324(19):12971304.CrossRefGoogle ScholarPubMed
Scheinberg, P, Nunez, O, Weinstein, B, Biancotto, A, Wu, CO, Young, NS. Horse versus rabbit antithymocyte globulin in acquired aplastic anemia. N Engl J Med. 2011; 365(5):430438.CrossRefGoogle ScholarPubMed
Hochsmann, B, Moicean, A, Risitano, A, Ljungman, P, Schrezenmeier, H. Supportive care in severe and very severe aplastic anemia. Bone Marrow Transplant. 2013; 48(2):168–73.CrossRefGoogle ScholarPubMed
Young, NS, Bacigalupo, A, Marsh, JC. Aplastic anemia: pathophysiology and treatment. Biol Blood Marrow Transplant. 2010; 16(1 Suppl):S119–125.CrossRefGoogle ScholarPubMed
Saracco, P, Quarello, P, Iori, AP, Zecca, M, Longoni, D, Svahn, J, et al. Cyclosporin A response and dependence in children with acquired aplastic anaemia: a multicentre retrospective study with long-term observation follow-up. Br J Haematol. 2008; 140(2):197205.CrossRefGoogle ScholarPubMed
Townsley, DM, Scheinberg, P, Winkler, T, Desmond, R, Dumitriu, B, Rios, O, et al. Eltrombopag added to standard immunosuppression for aplastic anemia. N Engl J Med. 2017; 376(16):15401550.Google Scholar
Fureder, W, Valent, P. Treatment of refractory or relapsed acquired aplastic anemia: review of established and experimental approaches. Leuk Lymphoma. 2011; 52(8):14351445.Google Scholar
Shahani, S, Braga-Basaria, M, Maggio, M, Basaria, S. Androgens and erythropoiesis: past and present. J Endocrinol Invest. 2009; 32(8):704716.Google Scholar
Olnes, MJ, Scheinberg, P, Calvo, KR, Desmond, R, Tang, Y, Dumitriu, B, et al. Eltrombopag and improved hematopoiesis in refractory aplastic anemia. N Engl J Med. 2012; 367(1):1119.Google Scholar
Desmond, R, Townsley, DM, Dumitriu, B, Olnes, MJ, Scheinberg, P, Bevans, M, et al. Eltrombopag restores trilineage hematopoiesis in refractory severe aplastic anemia that can be sustained on discontinuation of drug. Blood. 2014; 123(12):18181825.CrossRefGoogle ScholarPubMed
Sawada, K, Hirokawa, M, Fujishima, N. Diagnosis and management of acquired pure red cell aplasia. Hematol Oncol Clin North Am. 2009; 23(2):249259.CrossRefGoogle ScholarPubMed
Brown, KE, Anderson, SM, Young, NS. Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science. 1993; 262(5130):114117.Google Scholar
Macdougall, IC. Antibody-mediated pure red cell aplasia (PRCA): epidemiology, immunogenicity and risks. Nephrol Dial Transplant. 2005; 20 Suppl 4:iv9–15.CrossRefGoogle ScholarPubMed
Bolan, CD, Leitman, SF, Griffith, LM, Wesley, RA, Procter, JL, Stroncek, DF, et al. Delayed donor red cell chimerism and pure red cell aplasia following major ABO-incompatible nonmyeloablative hematopoietic stem cell transplantation. Blood. 2001; 98(6):16871694.CrossRefGoogle ScholarPubMed
Kurtzman, G, Frickhofen, N, Kimball, J, Jenkins, DW, Nienhuis, AW, Young, NS. Pure red-cell aplasia of 10 years’ duration due to persistent parvovirus B19 infection and its cure with immunoglobulin therapy. N Engl J Med. 1989; 321(8):519523.CrossRefGoogle ScholarPubMed
Sawada, K, Fujishima, N, Hirokawa, M. Acquired pure red cell aplasia: updated review of treatment. Br J Haematol. 2008; 142(4):505514.CrossRefGoogle ScholarPubMed
Macdougall, IC, Rossert, J, Casadevall, N, Stead, RB, Duliege, AM, Froissart, M, et al. A peptide-based erythropoietin-receptor agonist for pure red-cell aplasia. N Engl J Med. 2009; 361(19):18481855.Google Scholar
Clark, DA, Dessypris, EN, Krantz, SB. Studies on pure red cell aplasia. XI. Results of immunosuppressive treatment of 37 patients. Blood. 1984; 63(2):277286.CrossRefGoogle ScholarPubMed
Sawada, K, Hirokawa, M, Fujishima, N, Teramura, M, Bessho, M, Dan, K, et al. Long-term outcome of patients with acquired primary idiopathic pure red cell aplasia receiving cyclosporine A. A nationwide cohort study in Japan for the PRCA Collaborative Study Group. Haematologica. 2007; 92(8):10211028.Google Scholar
Risitano, AM, Selleri, C, Serio, B, Torelli, GF, Kulagin, A, Maury, S, et al. Alemtuzumab is safe and effective as immunosuppressive treatment for aplastic anaemia and single-lineage marrow failure: a pilot study and a survey from the EBMT WPSAA. Br J Haematol. 2010; 148(5):791796.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×